【MIT线性代数学习笔记】2矩阵消元

本文详细介绍了线性代数中的矩阵消元法,通过具体例子展示了如何进行消元步骤,以及如何利用矩阵乘法描述这一过程。讨论了初等矩阵、置换矩阵及其在消元中的应用,并提及了矩阵逆变换的概念。
摘要由CSDN通过智能技术生成

前言

本节从消元出发,用矩阵来描述消元这一过程,从而理解行变换、矩阵的逆变换的本质。

消元

给出一个三维方程组:
{ x + 2 y + z = 2 3 x + 8 y + z = 12 4 y + z = 2 \left\{ \begin{array}{ll} x+2y+z &=2 \\ 3x+8y+z &=12 \\ 4y+z &=2 \end{array} \right. x+2y+z3x+8y+z4y+z=2=12=2
按照初高中的思想,要解这个方程可以用消元法(Elimination)。这里先用矩阵表示出该方程组:
( 1 2 1 3 8 1 0 4 1 ) \begin{pmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{pmatrix} 130284111
先不用考虑右侧的向量,因为Matlab中计算方程组是先算完左侧再去计算右侧,这里我们就模仿matlab,接下来开始消元。
step1:用第二行减去3倍第一行消去x,这时第一行第一列的1为第一个主元(pivot),得到结果如下:
( 1 2 1 0 2 − 2 0 4 1 ) \begin{pmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 4 & 1 \end{pmatrix} 100224121
step2:用第三行减去2倍第二行消去y,这是第二行第二列的2为第二个主元,得到结果如下:
( 1 2 1 0 2 − 2 0 0 5 ) \begin{pmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{pmatrix} 100220125
此时就已经完成了消元,其中第三行第三列的5为第三个主元。
然后再考虑右侧列向量,这是得到的就叫增广矩阵(augmented matrix)
( 1 2 1 2 3 8 1 12 0 4 1 2 ) \begin{pmatrix} 1 & 2 & 1 & 2\\ 3 & 8 & 1 & 12\\ 0 & 4 & 1 & 2 \end{pmatrix} 1302841112122
同样由前两步的消元可以得到:
step1:
( 1 2 1 2 0 2 − 2 6 0 4 1 2 ) \begin{pmatrix} 1 & 2 & 1 & 2\\ 0 & 2 & -2 & 6\\ 0 & 4 & 1 & 2 \end{pmatrix} 100224121262
step2:
( 1 2 1 2 0 2 − 2 6 0 0 5 − 10 ) \begin{pmatrix} 1 & 2 & 1 & 2\\ 0 & 2 & -2 & 6\\ 0 & 0 & 5 & -10 \end{pmatrix}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值