经典文献阅读之--Online Extrinsic Calibration(激光雷达,视觉和惯导外参在线标定)

文章介绍了一种新的自动驾驶系统,利用激光雷达、视觉和惯性测量进行精确定位,通过在线非线性优化和适应性滑动窗口机制实现外部校准。研究重点在于提出了一种融合策略,能有效管理不同传感器数据并提高系统性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 简介

为了实现精确定位,自动驾驶车辆通常依靠围绕移动平台的多传感器感知系统。校准是一个耗时的过程,机械畸变会导致外部校准误差。因此,《Lidar-Visual-Inertial Odometry with Online Extrinsic Calibration》提出了一种激光雷达-视觉-惯性里程计,结合了适应性滑动窗口机制,允许在线非线性优化和外部校准。在适应性滑动窗口机制中,进行空间-时间对齐以管理以不同频率到达的测量。在在线校准的非线性优化中,使用视觉特征、云特征和惯性测量单元(IMU)测量来估计自我运动并进行外部校准。

1. 主要贡献

本文提出了一种基于非线性优化的激光雷达-视觉-惯性系统,用于鲁棒地和准确地估计姿态并在线进行外部标定。本研究的主要贡献包括:

  1. 提出了一种适应性滑动窗口机制,用于管理来自异构传感器,包括3D激光雷达、相机和IMU的不同频率的测量。
  2. 提出了一种非线性优化公式,使用视觉特征、点云特征和IMU测量同时进行在线标定和运动估计。
  3. 进行了一系列广泛的实验,以验证所提出系统的性能。结果表明,我们的方法优于现有技术水平方法

2. 优化基于的激光雷达-视觉-惯性系统

2.1 整体系统(略看即可)

所提出系统的框架如图1所示,其中 T B t l B t c T^{B_{tc}}_{B_{tl}} TBtlBtc是传播变换,而 b a b_a ba b ω b_ω bω分别是IMU加速度计和陀螺仪偏差。在测量预处理步骤中,基于Kanade-Lucas-Tomasi(KLT)算法[21],在连续图像之间检测和跟踪视觉特征。基于曲率从点云中提取云特征,并由3D激光雷达在本地地图内跟踪,类似于LIO-SAM[8]。使用连续视觉关键帧之间的所有IMU测量计算IMU预积分项。
在这里插入图片描述
构建一个涉及所有系统状态和测量的非线性优化问题,在滑动窗口内对系统状态(运动和外参)进行优化。如果将 W 、 B 、 C W、B、C WBC L L L分别定义为世界、IMU、相机和三维激光雷达的框架,则要优化的状态变量定义为在滑动窗口范围 N + 1 N+1 N+1内的运动状态 x B t i W ( i = 0 , 1 , . . . , N ) x^W_{B_{t_i}}(i=0,1,...,N) xBtiW(i=0,1,...,N),相机外参 x C B x^B_C xCB,3D激光雷达外参 x L C x^C_L xLC和观察到的视觉特征的逆深度 d j ( j = 1 , 2 , . . . , m ) d_j(j=1,2,...,m) dj(j=1,2,...,m)。状态变量的完整定义为:
在这里插入图片描述
由于其较高的频率,视觉特征可能并不总能找到匹配的云特征(如图2中虚线圆圈所示的“未找到云”)。接下来,我们将详细描述时空对准过程。
在这里插入图片描述

当新的云特征帧 P t l L P^L_{tl} PtlL在时间 t i t_i ti到达时,首先将其空间对准到本体坐标系,即
在这里插入图片描述
经过空间对准之后, P t l B P^B_{tl} PtlB 与特定的 x B t i W x^W_{B_{t_i}} xBtiW x C B x^B_C xCB x L C x^C_L xLC 在以下形式上进行时间对准:
在这里插入图片描述
其中, R B t i W R^W_{B_{t_i}} RBtiW p B t i W p^W_{B_{t_i}} pBtiW代表物体框架在时间 t i t_i ti的方向(由旋转矩阵描述)和位置(由3D向量描述); v B t i W v^W_{B_{t_i}} vBtiW是速度向量; b a , t i b_{a,t_i} ba,ti b ω , t i b_{ω,t_i} bω,ti是IMU加速度计和陀螺仪偏差,也在时间 t i t_i ti R C B R^B_C RCB p C B p^B_C pCB包含相机和IMU之间的外在关系; R L C R^C_L RLC p L C p^C_L pLC是3D激光雷达和相机之间的外在关系。最后,应注意VINS-Mono的视觉回路闭合模块被直接用于消除累积的定位误差[6]。

2.2 自适应滑动窗口(和vins类似)

我们系统的滑动窗口机制改编自VINS-Mono[6]。主要区别在于特征管理,如图2所示。考虑到最低频率(点云特征)的测量作为参考,它总是与匹配的视觉特征进行空间-时间对齐。然而,最近的视觉特征时间为 t c t_c tc

…详情请参照古月居

### FASTLIO 近距离物体扫描发散问题分析 FASTLIO 是一种基于激光雷达性测量单元 (IMU) 的实时 SLAM 系统,其核心在于利用激光雷达获取环境几何结构的同时,借助 IMU 提供高频率的姿态估计以增强系统的鲁棒性精度。然而,在实际应用中,当存在近距离障碍物时,系统可能会因为传感器噪声、标定误差或其他因素而出现状态估计发散的现象。 #### 可能的原因分析 1. **激光雷达与 IMU 未标定** 如果激光雷达与 IMU 的(即两者的相对位置姿态关系)未经过精确标定,则可能致两者之间的数据不一致。这种不一致性会引入额的误差源,尤其是在动态环境中或面对复杂场景时[^1]。 2. **近距离物体的影响** 当激光雷达扫描到非常接近的物体时,点云密度显著增加,这可能使得特征提取变得困难,进而影响位姿估计的质量。此,近距离点云中的噪声也可能被放大,进一步加剧了系统的不稳定行为[^3]。 3. **IMU 零偏累积效应** 即使在短时间尺度上,IMU 的零偏误差也会逐渐积累并传播至整个状态估计过程中。如果缺乏有效的校正机制(如视觉辅助或 GNSS 数据),则该误差最终会致轨迹漂移甚至完全失效。 #### 开启 IMU 在线优化的作用 针对上述提到的第一类原因——激光雷达与 IMU 的标定偏差,可以通过配置文件启用 IMU 在线优化功能加以缓解。具体来说: - 在 FASTLIO 的 `config` 文件中有选项允许启动数自适应调整模块。这一特性能够依据当前观测到的数据自动修正初始设定好的固定值。 - 同时需要注意的是,虽然这种方法可以在一定程度上补偿静态条件下的错配情况,但对于某些极端情形(比如剧烈振动条件下产生的瞬态扰动),它未必总能达到理想效果[^2]。 以下是设置相关数的一个简单示例代码片段: ```yaml # Example of enabling online extrinsic calibration in FASTLIO's config file. imu_online_calibration: true # Enable the feature to optimize IMU extrinsics dynamically during runtime. initial_guess_for_imu_extrinsic: translation: [0.0, 0.0, 0.0] # Initial guess for position offset between LiDAR and IMU frame origins. rotation: [0.0, 0.0, 0.0, 1.0] # Quaternion representation for orientation alignment. ``` #### 综合解决方案建议 为了更全面地应对 FASTLIO 在处理近距目标时可能出现的状态扩散现象,可以考虑采取以下措施之一或多者结合的方式来进行改进: 1. 加强前端预处理阶段对于异常密集区域的有效过滤策略; 2. 增加多模态传感输入作为补充信息来源用于交叉验证目的; 3. 调整算法内部权重分配逻辑以便更好地平衡不同子组件贡献度差异; 以上方法均有助于提升整体性能表现水平,并降低因单一硬件局限所引发的风险隐患。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敢敢のwings

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值