精确物体检测和语义分割的丰富特征层次结构Rich feature hierarchies for accurate object detection and semantic segmentation

5 篇文章 0 订阅
2 篇文章 0 订阅
本文介绍了一种名为R-CNN的物体检测算法,它将CNN应用于区域提议并结合监督预训练,相比VOC2012的最优结果,提升了超过30%的mAP,达到53.3%,且在ILSVRC2013检测数据上超越了OverFeat。
摘要由CSDN通过智能技术生成

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik

在过去几年中,根据标准的PASCAL VOC数据集进行的物体检测性能已经趋于稳定。最佳性能的方法是复杂的集成系统,通常将多个低级图像特征与高级上下文结合起来。在本文中提出了一种简单且可扩展的检测算法,相对于VOC 2012先前的最佳结果,平均精度(mAP)提高了30%以上,达到了53.3%的mAP。

文章的方法结合了两个关键见解:
(1)可以将高容量的卷积神经网络(CNN)应用于自下而上的区域提议,以定位和分割物体;
(2)在标记的训练数据稀缺时,针对辅助任务进行监督预训练,然后进行领域特定的微调,可以显著提高性能。


由于本文将区域提议与CNN结合在一起,因此将此方法称为R-CNN:具有CNN特征的区域。本文还将R-CNN与OverFeat进行了比较,后者是一种基于类似CNN架构的滑动窗口检测器。经过发现,在200类ILSVRC2013检测数据集上,R-CNN的性能远远优于OverFeat。

原文链接:

Rich feature hierarchies for accurate object detection and semantic segmentation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eric Woo X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值