the-matrix-cookbook(1-1)

UTF8gbsn

Trace

  1. Tr ⁡ ( A ) = ∑ i A i i \operatorname{Tr}(\mathbf{A})=\sum_{i} A_{i i} Tr(A)=iAii
    这是迹的定义,这里无需证明.

  2. Tr ⁡ ( A ) = ∑ i λ i , λ i = eig ⁡ ( A ) \operatorname{Tr}(\mathbf{A})=\sum_{i} \lambda_{i}, \quad \lambda_{i}=\operatorname{eig}(\mathbf{A}) Tr(A)=iλi,λi=eig(A)

    这个证明实际上较为复杂.我们来看看如何一步一步里证明.

    ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0

    我们知道一个n阶多项式方程,具有n个根(这里不做证明).也就是说,一个n阶矩阵具有n个特征值(包含重根).那么来看看为什么 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0的根就是矩阵A的特征值.

    我们先来为什么方正A的特征值就是 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0的根.

    1. 首先从特征值,和特征向量的定义出发
      A v = λ v ⇒ ( A − λ I ) v = 0 Av=\lambda v \Rightarrow (A-\lambda I)v=0 Av=λv(AλI)v=0

    2. 上面右边的方程组要想解出非 0
      解的话.必须满足 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0.于是乎,我们发现只要是能使 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0 λ \lambda λ都是特征值.因为一定可以找到非0的v使得 A v = λ v Av=\lambda v Av=λv成立.

      至于为什么齐次方程组的行列式为0,方程组就有非0解.这里不做证明.请参考线代的书籍.

    3. ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0正是一个n次方程,故而有n个根(包含重根).而这些根都是A的特征值.

    再来看看如何证明 ∑ i = 1 λ i = ∑ i = 1 a i i \sum_{i=1}\lambda_i=\sum_{i=1}a_{ii} i=1λi=i=1aii.证明这个东西其实也比较简单.需要运用多项式的系数.

    1. 首先来看看 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0,因为这个方程在复数域有n个根,那么我们可以把它改写为
      ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ n ) = 0 (\lambda-\lambda_1)(\lambda-\lambda_2)\cdots(\lambda-\lambda_n)=0 (λλ1)(λλ2)(λλn)=0
      其中 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots, \lambda_n λ1,λ2,,λn就是n个特征值.

    2. 我们来看看这个方程的 λ n − 1 \lambda^{n-1} λn1的系数.通过上面的方程,我们可以很容易计算 λ n − 1 \lambda^{n-1} λn1

      − ( λ 1 + λ 2 + ⋯ + λ n ) λ n − 1 -(\lambda_1+\lambda_2+\cdots+\lambda_n)\lambda^{n-1} (λ1+λ2++λn)λn1

    3. 再次的我们可以通过 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0来求 λ n − 1 \lambda^{n-1} λn1项.

      ( a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ) = 0 \left( \begin{array}{cccc} a_{11}-\lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1}& a_{n2} & \cdots & a_{nn}-\lambda \end{array} \right)=0 a11λa21an1a12a22λan2a1na2nannλ=0

      这个式子的 λ n − 1 \lambda^{n-1} λn1的系数是什么?

      其实很简单,根据行列式的定义我们可以知道.非住对角元素的乘积.其他的累加项的次数最高为 λ n − 2 \lambda^{n-2} λn2,所以这个式子的 λ n − 1 \lambda^{n-1} λn1项只会出现在

      ( a 11 − λ ) ( a 22 − λ ) ⋯ ( a n n − λ ) (a_{11}-\lambda)(a_{22}-\lambda)\cdots(a_{nn}-\lambda) (a11λ)(a22λ)(annλ)

      这个式子的 λ n − 1 \lambda^{n-1} λn1项的系数为

      − ( a 11 + a 22 + ⋯ + a n n ) λ n − 1 -(a_{11}+a_{22}+\cdots+a_{nn})\lambda^{n-1} (a11+a22++ann)λn1

    4. 有因为

      ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ n ) = ∣ A − λ I ∣ (\lambda-\lambda_1)(\lambda-\lambda_2)\cdots(\lambda-\lambda_n)=|A-\lambda I| (λλ1)(λλ2)(λλn)=AλI

      所以原式得证.

    PS:一个n阶方正A的非线性相关的特征向量不一定有n个.这样的矩阵都是不能对角化的.因为可以对角化的方正A,正好会含有n个非线性相关的特征向量.比如矩阵

    ( 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ) \left( \begin{array}{cccc} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right) 1000100010001000

    就不能对角话

  3. Tr ⁡ ( A ) = Tr ⁡ ( A T ) \operatorname{Tr}(\mathbf{A})=\operatorname{Tr}\left(\mathbf{A}^{T}\right) Tr(A)=Tr(AT)

    转置矩阵于原来的矩阵对角线元素相同.(得证)

  4. Tr ⁡ ( A B ) = Tr ⁡ ( B A ) \operatorname{Tr}(\mathbf{A B})=\operatorname{Tr}(\mathbf{B A}) Tr(AB)=Tr(BA)

    • AB的对角线元素为 d i i = ∑ k = 1 n a i , k b k , i d_{ii}=\sum_{k=1}^{n}a_{i,k}b_{k,i} dii=k=1nai,kbk,i,而累加的结果为 ∑ i = 1 n d i i = ∑ i = 1 n ∑ k = 1 n a i , k b k , i \sum_{i=1}^{n}d_{ii}=\sum_{i=1}^{n}\sum_{k=1}^{n}a_{i,k}b_{k,i} i=1ndii=i=1nk=1nai,kbk,i

    • BA的对角线元素为 d i i = ∑ k = 1 n b i , k a k , i d_{ii}=\sum_{k=1}^{n}b_{i,k}a_{k,i} dii=k=1nbi,kak,i,而累加的结果为 ∑ i = 1 n d i i = ∑ i = 1 n ∑ k = 1 n b i , k a k , i \sum_{i=1}^{n}d_{ii}=\sum_{i=1}^{n}\sum_{k=1}^{n}b_{i,k}a_{k,i} i=1ndii=i=1nk=1nbi,kak,i

    • 我们可以对BA的累加结果进行变换,如果我们交换i,k的label.可得
      ∑ k = 1 n ∑ i = 1 n b k , i a i , k = ∑ k = 1 n ∑ i = 1 n a i , k b k , i = ∑ i = 1 n ∑ k = 1 n a i , k b k , i \sum_{k=1}^{n}\sum_{i=1}^{n}b_{k,i}a_{i,k}=\sum_{k=1}^{n}\sum_{i=1}^{n}a_{i,k}b_{k,i}=\sum_{i=1}^{n}\sum_{k=1}^{n}a_{i,k}b_{k,i} k=1ni=1nbk,iai,k=k=1ni=1nai,kbk,i=i=1nk=1nai,kbk,i

    由此可见原式得证.

  5. Tr ⁡ ( A + B ) = Tr ⁡ ( A ) + Tr ⁡ ( B ) \operatorname{Tr}(\mathbf{A}+\mathbf{B})=\operatorname{Tr}(\mathbf{A})+\operatorname{Tr}(\mathbf{B}) Tr(A+B)=Tr(A)+Tr(B)

    • 左边等于 ∑ i = 1 n ( a i i + b i i ) \sum_{i=1}^{n}(a_{ii}+b_{ii}) i=1n(aii+bii)

    • 右边等于 ∑ i = 1 n a i i + ∑ i = 1 n b i i = ∑ i = 1 n ( a i i + b i i ) \sum_{i=1}^{n}a_{ii}+\sum_{i=1}^{n}b_{ii}=\sum_{i=1}^{n}(a_{ii}+b_{ii}) i=1naii+i=1nbii=i=1n(aii+bii)

    原式得证

  6. Tr ⁡ ( A B C ) = Tr ⁡ ( B C A ) = Tr ⁡ ( C A B ) \operatorname{Tr}(\mathbf{A B C})=\operatorname{Tr}(\mathbf{B C A})=\operatorname{Tr}(\mathbf{C A B}) Tr(ABC)=Tr(BCA)=Tr(CAB)

    可以利用14的结论来证明即可.

  7. a T a = Tr ⁡ ( a a T ) \mathbf{a}^{T} \mathbf{a}=\operatorname{Tr}\left(\mathbf{a a}^{T}\right) aTa=Tr(aaT)

    • 左边 ∑ i = 1 n a i a i \sum_{i=1}^{n}a_ia_{i} i=1naiai

    • 右边对角线元素为 d i i = a i a i ⇒ T r = ∑ i = 1 n a i a i d_{ii}=a_{i}a_i \Rightarrow Tr=\sum_{i=1}^{n}a_{i}a_i dii=aiaiTr=i=1naiai

    原式得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值