n个不同对象聚类为k个类别有多少种可能性? 李航博士,统计学习方法2nd.公式14.21的修正.

UTF8gbsn

n个不同的对象分到k个相同的盒子里面, 要求每个盒子至少有一个对象.
有多少种分法. 这是在k均值聚类里面的一个组合数学问题.
在k均值聚类里面有n个对象各不相同,
要把这个n个对象分到k个类别里面并要求每个类别必须至少含有一个对象.
总共的分法有多少中? 这道题的答案是第二类的stirling number.
我们来看看如何来求解.我们把原问题定义为 P ( n , k ) P(n,k) P(n,k)

初探

如果将n个不同的对象放到k个不同的盒子里面总共有多少种方法?
这个问题不再限制每个盒子必须含有一个对象. 我们定义这个事件为 S S S,答案是
∣ S ∣ = k n |S|=k^n S=kn

接下来,
我们再来定义特殊的几个事件.我们先假设盒子各不相同并且有 k k k个盒子.
A i A_i Ai表示第 i , ( 1 ⩽ i ⩽ k ) i, (1\leqslant i\leqslant k) i,(1ik)个盒子是空的事件.
那么,我们定义下面一个事件

S n , k = A ‾ 1 ∩ A ‾ 2 ∩ ⋯ ∩ A ‾ k S_{n,k}=\overline{A}_1\cap \overline{A}_2 \cap \cdots \cap \overline{A}_k Sn,k=A1A2Ak

事件 S n , k S_{n,k} Sn,k表示, k k k个盒子都非空.

∣ S n , k ∣ = ∣ S ∣ − ∣ A 1 ∪ A 2 ∪ ⋯ ∪ A k ∣ |S_{n,k}|=|S|-|A_1\cup A_2\cup \cdots \cup A_k| Sn,k=SA1A2Ak

如果我们能够计算出 ∣ S n , k ∣ |S_{n,k}| Sn,k那么 P ( n , k ) = 1 k ! ∣ S n , k ∣ P(n,k)=\frac{1}{k!}|S_{n,k}| P(n,k)=k!1Sn,k

容斥原理

现在我们剩下的唯一目的就是计算 ∣ A 1 ∪ A 2 ∪ ⋯ ∪ A k ∣ |A_1\cup A_2\cup \cdots \cup A_k| A1A2Ak.
而这个集合可以使用容斥原理来计算

∣ A 1 ∪ A 2 ∪ ⋯ ∪ A k ∣ = ∑ i = 1 k ∣ A i ∣ − ∑ 1 ⩽ i < j ⩽ n k ∣ A i ∩ A j ∣ + ∑ 1 ⩽ i < j < h ⩽ n k ∣ A i ∩ A j ∩ A h ∣ + ⋯ + ( − 1 ) k ∣ A 1 ∩ A 2 ∩ ⋯ ∩ A k ∣ |A_1\cup A_2\cup \cdots \cup A_k| = \sum_{i=1}^{k}|A_i|-\sum_{1\leqslant i< j \leqslant n}^k|A_i\cap A_j|+\sum_{1\leqslant i< j < h \leqslant n}^{k}|A_i\cap A_j\cap A_h|+\cdots+ (-1)^k|A_1\cap A_2\cap \cdots \cap A_k| A1A2Ak=i=1kAi1i<jnkAiAj+1i<j<hnkAiAjAh++(1)kA1A2Ak

∣ A 1 ∪ A 2 ∪ ⋯ ∪ A k ∣ = ( k 1 ) ( k − 1 ) n − ( k 2 ) ( k − 2 ) n + ( k 3 ) ( k − 3 ) n + ⋯ + ( − 1 ) k − 1 ( k k ) ( k − k ) n |A_1\cup A_2\cup \cdots \cup A_k|=\binom{k}{1}(k-1)^n-\binom{k}{2}(k-2)^n+\binom{k}{3}(k-3)^n+\cdots + (-1)^{k-1}\binom{k}{k}(k-k)^n A1A2Ak=(1k)(k1)n(2k)(k2)n+(3k)(k3)n++(1)k1(kk)(kk)n

最后可得

∣ S n , k ∣ = ∣ S ∣ − ∣ A 1 ∪ A 2 ∪ ⋯ ∪ A k ∣ = ( k 0 ) ( k − 0 ) n − ( k 1 ) ( k − 1 ) n + ( k 2 ) ( k − 2 ) n + ( k 3 ) ( k − 3 ) n + ⋯ + ( − 1 ) k ( k k ) ( k − k ) n = ∑ i = 0 k ( k i ) ( − 1 ) i ( k − i ) n \left. \begin{aligned} |S_{n,k}|&=|S|-|A_1\cup A_2\cup \cdots \cup A_k|\\ &=\binom{k}{0}(k-0)^n-\binom{k}{1}(k-1)^n+\binom{k}{2}(k-2)^n+\binom{k}{3}(k-3)^n+\cdots + (-1)^{k}\binom{k}{k}(k-k)^n\\ &=\sum_{i=0}^{k}\binom{k}{i}(-1)^i(k-i)^n \end{aligned} \right. Sn,k=SA1A2Ak=(0k)(k0)n(1k)(k1)n+(2k)(k2)n+(3k)(k3)n++(1)k(kk)(kk)n=i=0k(ik)(1)i(ki)n

最后得到第二类stirling number为

P ( n , k ) = 1 k ! ∣ S n , k ∣ = 1 k ! ∑ i = 0 k ( k i ) ( − 1 ) i ( k − i ) n P(n,k)=\frac{1}{k!}|S_{n,k}|=\frac{1}{k!}\sum_{i=0}^{k}\binom{k}{i}(-1)^i(k-i)^n P(n,k)=k!1Sn,k=k!1i=0k(ik)(1)i(ki)n

测试

使用本算法测试小数据如果 n = 4 , k = 2 n=4,k=2 n=4,k=2,可手算出结果为 P ( 4 , 2 ) = 7 P(4,2)=7 P(4,2)=7.
和我们使用公式计算的结果一样.
另外还有一种验算方法,就是使用软件计算和我们计算的结果进行比对.
通过mathematica对stirling number进行计算我们的算法和软件的结果一样.比如

S t i r l i n g S 2 [ 11 , 4 ] = 145750 StirlingS2[11, 4] = 145750 StirlingS2[11,4]=145750

  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值