关于大语言模型中“微调”概念的学习资料收集

当谈到大型语言模型(LLM)以及它们的微调时,初学者可能会感到困惑。让我们更详细地解释一下这些概念,以帮助初学者更好地理解。

1. 大型语言模型(LLM)

什么是LLM?

LLM是一种强大的计算机程序,它通过学习大量文本数据来理解和生成自然语言。这些模型可以用于各种自然语言处理任务,如文本生成、翻译、问答等。

示例模型:

一些著名的LLM包括GPT-3和BERT。它们是通过在数十亿字节的文本数据上进行训练而创建的。

2. 微调(Fine-Tuning)

什么是微调?

微调是指采用一个已经训练好的LLM,并在一个小而特定的数据集上对它进行额外的训练,以使它更适应特定任务或领域。

为什么要微调?

通用的LLM虽然非常强大,但不一定适用于所有任务或领域。微调可以帮助我们使模型更适应特定需求,提高性能。

微调的例子:

假设你想构建一个医疗诊断系统,你可以使用已有的LLM,并通过微调,让它更懂医学术语和处理医疗相关问题。

3. 基础LLM(Base LLM)

什么是基础LLM?

基础LLM是预先训练好的通用语言模型,例如GPT-3。这些模型已经在大规模通用数据上进行了训练,可以执行各种任务。

基础LLM的优势和局限性:

基础LLM具有广泛的语言理解和生成能力,但它们可能不够适应特定领域或任务。

4. 少样本提示(Few-Shot Prompting)

什么是少样本提示?

少样本提示是一种技术,它允许我们在提供少量示例输入和输出的情况下,指导LLM执行特定任务。

如何工作?

举个例子,如果你想让LLM进行情感分析,你可以提供几个评论文本样本和相应的情感标签,这样LLM就能理解你需要的输出格式。

优势和局限性:

少样本提示不需要大规模的数据集,但它可能不如全面微调那样强大,且有过拟合的风险。

5. 检索增强生成(RAG)

什么是RAG?

RAG是一种方法,它允许我们在LLM中注入特定领域的知识,而无需重新训练整个模型。

如何工作?

我们可以构建一个包含特定领域文档的数据库,当需要特定领域知识时,LLM可以检索相关文档内容并将其用作上下文,以生成更专业和准确的回复。

优势:

RAG是一种轻量级方法,可以动态注入领域知识,避免了重新训练模型的复杂性。

6. 何时需要微调?

关键任务和精度要求高:

微调在需要高精度的关键任务时非常有用,例如医疗诊断或自动驾驶中的对象识别。

端侧部署和轻量级模型:

如果需要在移动设备或物联网设备上部署,可能需要微调以获得更轻量级的模型。

因此,微调是一种提高LLM性能的方法,但并不总是必需的。在大多数情况下,初学者可以通过合理的提示和辅助技术来实现他们的需求,而无需进行复杂的微调过程。微调通常在关键任务和轻量级模型部署等极端情况下才显得更加必要。因此,开发者需要谨慎考虑何时选择微调,以充分利用LLM的强大潜力。

接下来我们将深入了解LLM微调的实际过程,包括数据准备、模型选择、超参数调整以及常见问题的解决方法。

第一步:明确微调目标

在开始微调之前,我们必须明确微调的目标。这个目标可能是构建一个LLM,以便它能够更好地理解医学文档并回答医疗领域的问题。或者可能是创建一个模型,用于自动化客户支持回答。

第二步:数据准备

收集和准备数据集:首先,我们需要收集特定领域的数据。例如,如果我们的目标是医疗领域,我们需要医学文档、病历和医学词汇表。这些数据应该是干净、结构化的,并包含各种情况和文本样本。

数据清洗和预处理:数据清洗是确保数据质量的关键步骤。它包括去除噪音、处理缺失值和标准化文本。在文本数据上,常见的预处理包括分词、停用词移除和词干化。

第三步:选择LLM和工具

选择适当的LLM:根据任务选择适合的LLM。例如,如果您的任务是生成文本,可能选择GPT系列模型。如果是文本分类,BERT等模型可能更合适。

准备微调工具和环境:确保您有适当的工具和环境来进行微调。许多机器学习框架和深度学习库如PyTorch和TensorFlow都可以用于微调。

第四步:微调过程

微调是一个迭代的过程,通常包括以下步骤:

加载预训练模型

from transformers import GPT2LMHeadModel, GPT2Tokenizer model = GPT2LMHeadModel.from_pretrained(“gpt2”)``tokenizer = GPT2Tokenizer.from_pretrained(“gpt2”)

准备微调数据:将数据转化为适合LLM输入的格式。这通常涉及将文本编码成模型可以理解的数值表示。

定义微调目标:根据任务定义微调目标,例如文本生成或文本分类。

微调模型:使用微调数据对模型进行训练。这可能需要多个epochs。

from transformers import TrainingArguments, Trainer training_args = TrainingArguments( per_device_train_batch_size=4, output_dir=“./output”, overwrite_output_dir=True, num_train_epochs=3,) trainer = Trainer(` `model=model,` `args=training_args,` `train_dataset=train_dataset,) trainer.train()

第五步:评估性能

在微调过程中,评估模型在验证集上的性能是至关重要的。您可以使用各种评估指标,如准确性、F1分数或生成文本的质量。

results = trainer.evaluate()

第六步:超参数调整

如果模型性能不如预期,您可以尝试调整微调过程中的超参数,如学习率、批次大小等,以提高性能。

第七步:部署和维护

一旦微调完成,您可以将模型部署到实际应用中。不过,请记住,模型的维护同样重要。定期监测模型性能,并根据新数据重新微调。

在实际操作中,您可能会遇到各种挑战和常见问题,如数据不平衡、过拟合、性能下降等。解决这些问题需要深入的领域知识和调试技巧。

总结起来,LLM微调是一项强大的工具,但它需要谨慎的计划和实际操作。通过明确定义目标、准备数据、选择合适的LLM和工具、经过迭代的微调和不断的性能评估,您可以在特定领域中取得出色的结果。

最后,我将通过一个具体的案例,讲述如何使用ClinicalBERT模型对医疗大数据进行微调,以满足医学领域的特定需求。

第一步:明确微调目标

在我们开始操作之前,首先必须明确微调的目标。在这个案例中,我们的目标是创建一个能够理解和处理医疗领域文本的模型,以便它可以用于诊断支持、疾病分类等医学任务。

第二步:数据准备

收集和准备数据集:我们需要收集医疗领域的大规模数据集,包括病历、医学文献、病例报告等。这些数据必须经过充分的清洗和结构化,以确保质量。

处理文本数据:医学文本通常包含大量特殊术语和缩写,因此需要专门的预处理。分词、停用词处理、词干化等步骤都是必要的。

# 代码示例:使用Python和NLTK库进行文本预处理``import nltk``from nltk.corpus import stopwords``from nltk.stem import PorterStemmer``   ``nltk.download('stopwords')``stop_words = set(stopwords.words('english'))``stemmer = PorterStemmer()``   ``def preprocess_text(text):`    `# 分词`    `words = text.split()`    `# 去除停用词`    `words = [word for word in words if word not in stop_words]`    `# 词干化`    `words = [stemmer.stem(word) for word in words]`    `# 重新组合文本`    `return ' '.join(words)

第三步:选择ClinicalBERT模型

选择合适的LLM模型:在医学领域,ClinicalBERT是一种经过预训练的LLM模型,专门用于处理医疗文本。我们可以使用Hugging Face Transformers库加载该模型。

# 代码示例:使用Hugging Face Transformers库加载ClinicalBERT模型``from transformers import BertTokenizer, BertForSequenceClassification``   ``model_name = "emilyalsentzer/Bio_ClinicalBERT"``tokenizer = BertTokenizer.from_pretrained(model_name)``model = BertForSequenceClassification.from_pretrained(model_name)

第四步:微调过程

微调前准备:将数据集拆分为训练集、验证集和测试集。将文本编码成模型可以理解的输入格式,并为每个文本添加标签以表示其所属的类别或任务。

定义微调目标:在这个案例中,我们可以选择文本分类作为微调目标,例如预测疾病类型或判断病例报告的重要性。

# 代码示例:定义文本分类任务``from transformers import Trainer, TrainingArguments``   ``training_args = TrainingArguments(`    `output_dir='./results',`    `evaluation_strategy="steps",`    `eval_steps=500,`    `save_steps=500,`    `num_train_epochs=3,``)``   ``trainer = Trainer(`    `model=model,`    `args=training_args,`    `train_dataset=train_dataset,`    `eval_dataset=eval_dataset,``)

微调模型

# 代码示例:微调模型``trainer.train()

第五步:评估性能

在微调过程中,我们必须评估模型在验证集上的性能,以便了解其在任务上的表现。

# 代码示例:评估模型性能``results = trainer.evaluate()

第六步:常见问题与解决办法

过拟合问题:如果模型在训练集上表现很好但在验证集上表现差,可能存在过拟合问题。解决办法包括增加训练数据、降低模型复杂度或使用正则化技巧。

性能下降问题:如果模型性能下降,可以尝试调整超参数,例如学习率、批次大小或微调步数。

数据不平衡问题:在某些情况下,数据集中不同类别的样本数量可能不平衡,这可能导致模型偏向于多数类别。解决方法包括欠采样、过采样或使用权重调整。

第七步:部署和维护

一旦微调完成并且模型在验证集上表现良好,我们可以将模型部署

到实际应用中。不过,模型的维护同样重要。我们需要定期监测性能,处理新数据,甚至可能需要重新微调模型以适应新的需求。

总结起来,微调ClinicalBERT模型以满足医疗领域的需求是一个复杂但强大的过程。通过明确目标、准备数据、选择合适的LLM模型、经过迭代的微调、性能评估和解决常见问题,我们可以构建出一个在医学领域具有出色性能的模型。

-END-


👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 23
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值