【计算机图形学入门】笔记2:向量与线性代数(图形学中用到的线性代数)

1.A Swift and Brutal Introduction to Linear Algebra!简单粗暴入门线性代数

1.Graphics’ Dependencies 图形学依赖的一些知识

  1. 基础数学:Linear algebra, calculus, statistics 线代,微积分,统计学
  2. 基础物理:Optics, Mechanics 光学,力学
  3. 其他:Signal processing,Numerical analysis,a bit of aesthetics

2.Vectors 向量

请添加图片描述

单位向量:长度为1,用来表示方向,只表示一个方向。=原始向量/向量的长度

请添加图片描述

向量相加

  1. 几何中:
    请添加图片描述

  2. 数学中/代数中:直接把两者的坐标加起来

1.Dot product向量的点乘

点乘最大的作用:找到两个向量之间的夹角请添加图片描述

向量的点乘在维度坐标中的计算:请添加图片描述

点乘的第二个作用:投影,计算b投影到a的长度,通过b的长度*cos@
请添加图片描述

Decompose a vector 分解向量:

请添加图片描述
Determine forward /backward 确定方向:
请添加图片描述

2.向量的叉乘Cross product

1.作用1:建立三维坐标中的直角坐标系

请添加图片描述

a与b的叉乘可以得到c,c既垂直于a,b也垂直于ab所在的平面。

向量叉乘的矩阵表示:
请添加图片描述

2.作用2:判定左和右,判定内和外
请添加图片描述

当p点都在三条边左边时可以判定点p在三角形内部
请添加图片描述

当把三条边换为顺时针摆放时,会发现p点都在三条边右边,不管是顺时针还是逆时针排放,只要p点都在三条边右边/都在左边,即在三角形内部。

3.矩阵Matrix

1.两个矩阵相乘

请添加图片描述

2.矩阵没有交换律,有结合律
请添加图片描述

3.矩阵*向量:始终把向量看为列向量

请添加图片描述

4.矩阵的转置:乘积的转置需要先交换一下位置

请添加图片描述

5.单位矩阵和矩阵的逆

请添加图片描述

4.向量的点乘和叉乘都可以写成矩阵的形式

1.点乘

请添加图片描述

2.叉乘——A*是一个矩阵,由向量转化成的矩阵

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立志冲海大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值