均匀分布
若连续型随机变量 X X X具有概率密度为 f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\begin{cases}\frac{1}{b-a},a<x<b\\0,其他\end{cases} f(x)={b−a1,a<x<b0,其他则,称 X X X在区间 ( a , b ) (a,b) (a,b)上服从均匀分布,记为 X ∼ U ( a , b ) X\sim U(a,b) X∼U(a,b).
指数分布
若连续型随机变量
X
X
X的概率密度为
f
(
x
)
=
{
1
θ
e
−
x
/
θ
,
x
>
0
0
,
其
他
f(x)=\begin{cases}\frac{1}{\theta}e^{-x/\theta},x>0\\0,其他\end{cases}
f(x)={θ1e−x/θ,x>00,其他其中
θ
>
0
\theta>0
θ>0,则称
X
X
X服从参数为
θ
\theta
θ的指数分布。
性质(无记忆性):
对于任意
s
,
t
>
0
s,t>0
s,t>0,有
P
{
X
>
s
+
t
∣
X
>
s
}
=
P
{
X
>
t
}
P\{X>s+t|X>s\}=P\{X>t\}
P{X>s+t∣X>s}=P{X>t}
- 一个元件从开始使用至少能用 t t t时间的概率,与它已经用了 s s s时间后,还能至少用 t t t时间的概率是一样的。
- 指数分布在可靠性理论和排队理论中有广泛的应用。
ToBeContinued