概率统计学习笔记(9)——连续型:均匀分布、指数分布

均匀分布

若连续型随机变量 X X X具有概率密度为 f ( x ) = { 1 b − a , a &lt; x &lt; b 0 , 其 他 f(x)=\begin{cases}\frac{1}{b-a},a&lt;x&lt;b\\0,其他\end{cases} f(x)={ba1,a<x<b0,则,称 X X X在区间 ( a , b ) (a,b) (a,b)上服从均匀分布,记为 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b).

指数分布

若连续型随机变量 X X X的概率密度为 f ( x ) = { 1 θ e − x / θ , x &gt; 0 0 , 其 他 f(x)=\begin{cases}\frac{1}{\theta}e^{-x/\theta},x&gt;0\\0,其他\end{cases} f(x)={θ1ex/θ,x>00,其中 θ &gt; 0 \theta&gt;0 θ>0,则称 X X X服从参数为 θ \theta θ的指数分布。
性质(无记忆性):
对于任意 s , t &gt; 0 s,t&gt;0 s,t>0,有 P { X &gt; s + t ∣ X &gt; s } = P { X &gt; t } P\{X&gt;s+t|X&gt;s\}=P\{X&gt;t\} P{X>s+tX>s}=P{X>t}

  • 一个元件从开始使用至少能用 t t t时间的概率,与它已经用了 s s s时间后,还能至少用 t t t时间的概率是一样的。
  • 指数分布在可靠性理论和排队理论中有广泛的应用。

ToBeContinued

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值