MRAM学习笔记——1.VCMA介绍

本文探讨了STT-MRAM和SOT-MRAM的局限性,着重介绍了VCMA的工作原理,通过spice模型展示了旋进式VCMA和STT辅助翻转的仿真结果,指出VCMA在功耗和延迟上的显著优势。新技术概述了VCMA控制磁各向异性对下一代低功耗高速存储器的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

留下些自己总结的文字笔记,文献看完之后再咀嚼咀嚼,以后写大论文也好找素材。

背景:STT-MRAM,SOT-MRAM的不足

STT-MRAM 由于其读写路径不分离,而写电流通常为几十甚至几百uA量级,故而绝缘层的焦耳热积累比较严重,使得endurance不够出色,功耗也较大;
SOT-MRAM实现了读写分离;当对底层重金属注入电荷流,基于自旋霍尔效应(SHE)会产生一个自旋流,该自旋流在邻近的铁磁层(即自由层,free layer)中施加一个damping-like torque,方向垂直底电极层,该磁矩会诱使自由层的磁矩发生翻转;与此同时,基于Rashba效应产生的一个filed-like torque会加速磁矩翻转过程。
但SOT器件也存在着诸多不足,首先为实现确定性翻转需额外施加一个面内磁场或通过改造形状来实现对称性破缺,然后翻转速度不够快,其次三端器件面积占用较大,这些都阻碍了SOT-MRAM的产业化和应用前景。

VCMA的工作原理

针对STT和SOT在写入时面临的这些问题(STT写电流大、功耗高,SOT翻转速度慢,三端器件占面积),VCMA方案被提出:在对STT-MTJ写入时,分两步进行:

  • 先施加一个纳秒级的定向电压短脉冲,降低AP和P态的势垒高度;
  • 然后给予第二个写电压脉冲,完成阻态写入。
    在这里插入图片描述
    [Kang, W., Chang, L., Zhang, Y., & Zhao, W. (2017). Voltage-Controlled MRAM for Working Memory : Perspectives and Challenges.]

施加的第一个电压脉冲,可以调制CoFeB/MgO层的界面PMA,进而降低两个磁化状态之间的势垒,使得自由层磁矩变得不稳定,在两个自旋态之间旋进式振荡;
施加的第二个写电压,则完成对MTJ阻态的确定性写入。
在这里插入图片描述
[Wang, S., Lee, H., Wang, K. L., & Grezes, C. (2016). MTJ Variation Monitor-assisted Adaptive MRAM Write. 1–6.]

VCMA效应公式

公式可以结合着下一小节的verilogA的spice model慢慢看
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
[Kang, W., Ran, Y., Zhang, Y., Lv, W., & Zhao, W. (2017). Modeling and Exploration of the Voltage-Controlled Magnetic Anisotropy Effect for the Next-Generation Low-Power and High-Speed MRAM Applications. IEEE Transactions on Nanotechnology, 16(3), 387–395.]

VCMA SPICE model

在北航spinlib上下载的,其他模型也有,明尼苏达、新国立等都有课题组做MTJ的spice model,做的都差不多。
http://www.spinlib.com/STT_VCMA_MTJ.html

VCMA仿真性能

这篇文献里主要仿真了两种不同的利用VCMA效应的方式,并与传统STT-MRAM的翻转速度、正确率、功耗等进行了对比。

  1. 旋进式VCMA(precessional VCMA):
  2. STT辅助旋进式VCMA
    在这里插入图片描述

首先说旋进式VCMA,就有许多可仿的内容,主要分以下几个手段进行了spice仿真:

  • 固定一个电压Vb=1.2V,改变tb;
  • 固定一个tb=0.5ns,改变Vb;

以下几张图就是该课题组仿真得到的结果。可以看到:

  • 当固定Vb=1.2V,tb有一个可行区间 [0.30ns,0.65ns],tb更大或更小均不能使磁矩自由层mz翻转,且对翻转速度的影响也是有一个中间最优tb,由仿真看是0.45ns左右翻转最快,后续的一张图论证了这一结论。
  • 当固定tb=0.5ns,Vb<0.95V时无法翻转,大于0.95V时,Vb越大 翻转越快,越易于翻转,这与我们对VCMA效应减小AP与P态间的势垒的结论相一致。

在这里插入图片描述在这里插入图片描述
接着说STT辅助旋进式VCMA仿真。
这组仿真可以变得变量就多了一个即tb和Vb,tc和Vc;
下图是固定Vb=1.2V,Vc=0.8V,tc=0.4ns情况下,改变tb得到的仿真结果。
可以看到在不同的tb下均能实现稳定且迅速的翻转。
在这里插入图片描述
下图是precessional VCMA和STT-assisted precessinal VCMA的仿真波形对比,仿真条件上没有太多可对比之处,不知道放这个图有什么意义。
在这里插入图片描述

最后还提出了一组STT-assisted-thermally-activated VCMA的仿真,说白了就是先给MTJ通若干个ns/几十uA幅值的STT写电流,然后去掉写电流,加VCMA电压脉冲(eg.0.55V),功耗和延迟以及接线布局上都没有优势,甚至跟纯粹STT写电流式翻转也没有优势,感觉就是为了纯做对比凸显STT-assisted precessional VCMA才设计的仿真,称不上是VCMA。
在这里插入图片描述
在这里插入图片描述
下表为性能对比,可以看出precessional VCMA和STT-assisted precessional VCMA的功耗延迟都占有至少一个数量级的优势。
在这里插入图片描述

总结

VCMA-STT MTJ在翻转延时、功耗上相比传统STT-MTJ具有一个数量级以上的性能优势,但0.1ns级的电压脉冲操控难度较大,必然要引入一些额外的PLL电路等单元。后续还有VGSOT的研究,下一篇再写。

### SOT-MRAM 的读写操作原理 #### 写入操作 自旋轨道矩磁随机存储器 (SOT-MRAM) 利用了自旋霍尔效应来进行数据写入。当电流通过重金属层时,会产生垂直于电流方向的自旋流。这种自旋流可以有效地翻转自由层中的磁化方向,从而完成数据写入过程[^3]。 为了进一步优化写入效率并降低功耗,在某些设计中引入了电压控制磁各向异性 (VCMA) 效应。具体来说,给SOT施加一个短暂的电压脉冲,这不仅减少了写入所需的能量消耗,还改善了写错误率(WER),即提高了可靠性[^5]。 ```python def write_data(current_density, voltage_pulse_duration): """ 模拟SOT-MRAM写入操作 参数: current_density : 流过重金属层的电流密度 voltage_pulse_duration : 施加到设备上的电压脉冲持续时间 返回: success : 如果成功则返回True,否则False表示失败 """ spin_current = calculate_spin_hall_effect(current_density) magnetic_field = convert_to_magnetic_field(spin_current) apply_voltage(voltage_pulse_duration) flip_free_layer(magnetic_field) verify_write_operation() return True ``` #### 读取操作 对于读取而言,SOT-MRAM采用了隧道磁电阻(TMR)机制。结构由两层铁磁材料组成:一层是固定其磁化的钉扎层(Pinned Layer), 另一层是可以改变磁态的自由层(Free Layer)。这两者之间夹有一薄层绝缘体(通常是MgO)。当外部磁场作用使自由层相对于钉扎层发生偏转时,整个装置呈现出不同的电阻状态,据此可区分逻辑0和1。 ```python def read_data(): """ 模拟SOT-MRAM读取操作 返回: data_bit : 当前存储单元所代表的数据位(0 或 1) """ initial_resistance = measure_initial_resistance() apply_read_current() final_resistance = measure_final_resistance() if final_resistance > threshold_value: data_bit = 1 else: data_bit = 0 return data_bit ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值