电磁场理论笔记04:静电场的标量位

静电场:静止电荷分布所产生的场,\frac{\partial}{\partial t} = 0\vec{J} = 0

场方程:

\triangledown \times \vec{E} = 0

\triangledown \cdot \varepsilon_0\vec{E} = \rho

一、静电场的标量位

\triangledown \times \vec{E} = 0可知,静电场为保守场,即

\vec{E}(\vec{r}) = -\triangledown \phi(\vec{r})

静电场的标量位需要一个参考点,使各点的电位值唯一。一般来说,对于分布在有限区域内的带点系统,零电位的参考点取在无穷远处。

将单位电荷在电场中从P点移动到Q点,外力最少需要做的功为\phi_P - \phi_Q

点电荷的标量位\phi(\vec{r}) = \frac{Q}{4\pi\varepsilon_0r_s},单位:V

二、电偶极子

几何近似关系(r_s\gg d):r_{+} = r_s - \frac{d}{2}cos(\theta)r_{-} = r_s + \frac{d}{2}cos(\theta)

 \phi_{+} = \frac{q}{4\pi\varepsilon_0r_{+}}

\phi_{-} = \frac{-q}{4\pi\varepsilon_0r_{-}}

叠加原理:

\phi = \phi_{+} + \phi_{-} \\ = \frac{q}{4\pi\varepsilon_0} \left[ \frac{1}{r_+} - \frac{1}{r_-} \right ] \\ = \frac{q}{4\pi\varepsilon_0} \frac{r_- - r_+}{r_+ r_-} \\ = \frac{q}{4\pi\varepsilon_0} \frac{d cos(\theta)}{r_s^2 + \frac{d^2}{4} cos^2(\theta)} \\ \approx \frac{qdcos(\theta)}{4\pi\varepsilon_0r_s^2} = \frac{pcos(\theta)}{4\pi\varepsilon_0r_s^2}

\vec{E} = -\triangledown \phi \\ = - \frac{p}{4\pi\varepsilon_0} \left \{ \frac{-2cos(\theta)}{r_s^3} \hat{i_{r_s}} + \frac{-sin(\theta)}{r_s^3} \hat{i_{\theta}} \right \} \\ = \frac{p}{4\pi\varepsilon_0r_s^3}\left ( 2cos(\theta) \hat{i_{r_s}} + sin(\theta) \hat{i_{\theta}} \right )

三、电场标量位的微分方程

\triangledown \cdot \varepsilon_0 \vec{E} = \triangledown \cdot \varepsilon_0 (- \triangledown\phi) = - \varepsilon_0 \triangledown \cdot (\triangledown\phi) = - \varepsilon_0 \triangledown^2 \phi = \rho

泊松方程:\triangledown^2 \phi = -\frac{\rho}{\varepsilon_0}

四、电场标量位的边界条件

1. 一般边界条件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值