开绕组永磁同步电机120°空间矢量解耦脉冲宽度调制/中间六边形调制仿真

        从OEW-PMSM的零序回路模型可知,零序电流有两个激励源,分别是永磁体三次谐波反电动势和逆变器的共模电压。中间六边形调制的核心思想在于,控制逆变器产生的共模电压,使之保持为零,进而抑制由共模电压产生的零序电流。其电压矢量分布如下图所示。

3.2.1 120 °解耦调制共模电压状态分析
        双逆变器中间六边形调制各电压矢量对应的单逆变器电压矢量的组合如下表所
示:

        从表 3‑1中可以发现,采用中间六边形调制时,各逆变器中“1”的数量相同,根据上一章所阐述的双逆变器共模电压的产生原理可知,两个逆变器产生的共模电压相互抵消,所以双逆变器作用在电机绕组上的共模电压为零。 

3.2.2 120°解耦调制算法的实现

        在中间六边形内合成电压矢量时,可采取的开关组合方式共有26=64种。但是在工程应用过程中考虑到他们的实现复杂度,仅有4种组合是值得研究的:

        但是对于(c)、(d)两种方式而言,从一个状态到第二个状态切换时,虽然有一组逆变器不动作,但是另一组逆变器中,两相开关都发生动作。而SVPWM矢量切换的原则是,每次只能切换一相,所以(c)、(d)方案不符合开关切换原则。在下文中,将采用(a)方式。

        SVPWM一般分为五段式和七段式,为减小电流谐波含量,一般采用七段式SVPWM。且在电压矢量切换的时候,每个逆变器每次只允许有一个开关发生切换动作。同时,采用对称分布、等量分配零矢量的原则,以便于数字芯片DSP数字化的实现。下面将介绍,如何实现扇区矢量切换。即在一个开关周期内,先插入零矢量(000),接着插入两个有效矢量,在中间插入零矢量(111),接着再重新插入两个有效矢量,最后重新插入零矢量(000)。

在开绕组电机调制的论文里,基本上都会看到如上所示的表格。因为开绕组电机需要两个逆变器,所以模型搭建起来很复杂,一定要先理解好普通电机的逆变器模块怎么搭建,才能进一步学习开绕组电机的逆变器模块。为了方便大家理解,我这里举了一个例子。

        我这里给的三次谐波磁链有点太大了,我设置这么大的三次谐波磁链主要是为了让大家能比较直观地看到零序电流对电机的影响。在一般情况下,(每台电机都不同,需要自己测一下)三次谐波反电动势占基波反电动势的百分之几。以我实验室的电机为例子,三次谐波反电动势占基波反电动势的6%,所以三次谐波磁链是基波磁链的2%。但是我这个仿真里面设置到了16%,明显是太大了,不过这也只是仿真而已,让大家看看效果。

        如图 3.11所示,采用中间六边形调制时,逆变器虽然没有在电机绕组上产生共模电压。但是由于本台电机中具有较大的三次谐波反电动势,因此在零序回路中会产生较大的零序电流,其幅值将近达到了10A。较大的零序电流带来了较大的转矩脉动,转矩脉动使得电机运行性能受到影响,转速出现较大的波动;还可以发现,由于零序电流的存在,电机在空载时的三相电流不为零,这会增加电机的损耗;同时,相电流最大幅值超过了额定电流30A,若长时间运行将会使得电机发热损坏;零序电流的存在使得相电流发生了严重的畸变。如图 3.13(a)所示,相电流总谐波失真(THD)已经达到86.67%,相电流中的三次谐波分量幅值已经达到基波幅值的85.71%。 

下一次内容将介绍最大六边形调制(180°解耦调制)。需要开绕组电机模型的可以联系我的球球:3187812138

### 矢量空间解耦的概念 矢量空间解耦是指在一个多维矢量空间中,通过变换或其他手段使得原本相互关联的维度变得独立或者尽可能减少彼此之间的依赖关系。这种技术广泛应用于信号处理、机器学习以及计算机视觉等领域。 在数学上,可以理解为寻找一组基向量,在这组新的基下表示的数据具有更好的分离特性[^1]。具体来说: - **线性代数视角**:对于给定的一组数据点组成的矩阵 \(X\) ,目标是找到一个转换矩阵 \(W\) 使得到的新特征空间中的样本之间更加正交化。 - **统计学角度**:当考虑随机变量间的协方差结构时,则希望通过某种方式消除不同分量间存在的相关性,从而简化模型构建过程并提高计算效率。 ### 实现方法 #### 主成分分析 (PCA) 一种常见的用于矢量空间解耦的方法就是主成分分析(Principal Component Analysis),它能够有效地降低高维数据集的复杂度,并且保持原始信息的最大程度不变。其核心思想在于求解协方差矩阵的最大特征值对应的特征向量作为投影方向,以此来定义一个新的坐标系,在该坐标系下的各个轴代表了原数据集中最重要的变化趋势[^2]。 ```python from sklearn.decomposition import PCA pca = PCA(n_components=2) # 设置降维后的维度数量 transformed_data = pca.fit_transform(data_matrix) ``` #### 独立成分分析 (ICA) 除了 PCA 外,还有另一种称为 ICA 的算法特别适用于解决源信号混合问题。ICA 假设观测到的是多个未知独立源信号经过线性组合的结果,而它的目的是恢复这些原始信号。这种方法不仅实现了矢量空间上的解耦合,还进一步挖掘出了潜在因素之间的因果联系[^3]。 ```python from fastica import FastICA ica = FastICA(n_components=2) # 设定要提取的独立成分数目 independent_signals = ica.fit_transform(mixed_signal_matrix) ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

烦恼归林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值