【目标检测】------SPPNET

SPPNet(空间金字塔池化网络)解决了深度卷积神经网络输入固定尺寸的问题,通过空间金字塔池化层避免了图像预处理导致的信息丢失,提高了目标检测的效率。该技术在目标检测领域提升了特征提取速度,比R-CNN快24-102倍。在最后一层卷积层后,SPP层创建了一个特征金字塔,将不同大小的特征图展平并连接成固定长度的特征向量,用于后续全连接层的处理。
摘要由CSDN通过智能技术生成

SPPNet详解

RCNN系列:RCNN,SPPNet,Fast RCNN,Faster RCNN,R-FCN。

SPPNet出现的原因?
之前的网络,比如LeNet,AlexNet,ZF,VGG等,它们的输入都是固定大小的,为什么要固定大小呐?原因就在最后连接的全连接层上。全连接层的输入一定是固定大小的。这一点很容易理解,因为全连接层网络就是传统的神经网络,传统的神经网络的输入层必定是固定大小的。而卷积神经网络的conv层的输入并不需要固定大小,那么conv层不用固定大小,FC层的输入又要固定大小,那么在这两者之间加上一层SPP即可解决这个问题了。

在此之前,需要将图片经过crop(裁剪)、warp(拉伸)等操作把图片变换成固定尺寸,才能输入神经网络。这些操作在一定程度上会导致图片信息的丢失或者变形。对此SPPnet提出的解决方案是在最后一层卷积层后用空间金字塔池化层(Spatial Pyramid Pooling)代替普通池化层。
在这里插入图片描述
优点是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小飞龙程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值