【科普】Transformer架构是什么?其核心公式的Q、K、V代表什么?

在AI浪潮席卷全球的今天,Transformer模型早已成为技术圈的“顶流”,从自然语言处理的惊艳表现到图像识别的突破性应用,它无处不在,无所不能。简历上那一行“精通Transformer”,仿佛是一张通往大厂的门票,闪耀着求职者的野心与自信。然而,当面试官微微一笑,抛出那句轻描淡写却暗藏杀机的问题——“那你说说,Q、K、V在Transformer里到底是怎么回事?”——你的心跳是否会漏一拍?如果QKV对你来说只是三个字母的堆砌,而不是活生生的机制与逻辑,那么这场“精通”的豪言壮语恐怕要露馅了。这篇文章将带你直击Transformer的核心,直面QKV的真相。准备好迎接挑战了吗?让我们一起撕开迷雾,看看你有没有真本事让“精通Transformer”名副其实!

img

Transformer是近年来自然语言处理(NLP)领域最重要的突破之一,由Google在2017年发表的论文《Attention is All You Need》中提出。它彻底改变了序列建模的方式,取代了传统的RNN和LSTM模型。下面我们将全面解析Transformer的核心概念和工作原理。

1、 Transformer概览

Transformer是一种基于自注意力机制(Self-Attention)的序列到序列(Seq2Seq)模型,具有以下特点:

  • 完全基于注意力机制,无需循环或卷积结构
  • 高度并行化,训练效率大幅提升
  • 能够捕获长距离依赖关系
  • 由编码器(Encoder)和解码器(Decoder)组成

2、 核心组件

2.1 自注意力机制(Self-Attention)

自注意力机制是Transformer的核心,它允许模型在处理每个词时关注输入序列中的所有词,并动态计算它们的重要性。

计算过程

  1. 对每个输入词向量生成三个向量:Query(Q)、Key(K)、Value(V)
  2. 计算注意力分数:分数 = Q·K^T / √d_k (d_k是Key的维度)
  3. 应用softmax得到注意力权重
  4. 用权重对Value加权求和得到输出

2.2 多头注意力(Multi-Head Attention)

为了捕捉不同子空间的信息,Transformer使用多头注意力:

  • 将Q、K、V通过不同的线性投影分成h份
  • 分别计算每头的注意力
  • 拼接所有头的输出并通过线性层

2.3 位置编码(Positional Encoding)

由于Transformer没有循环结构,需要显式地注入位置信息:

PE(pos,2i) = sin(pos/10000^(2i/d_model))
PE(pos,2i+1) = cos(pos/10000^(2i/d_model))

其中pos是位置,i是维度。

3、 Transformer架构

3.1 编码器(Encoder)

由N个相同层堆叠而成(通常N=6)

每层包含:

  • 多头自注意力子层
  • 前馈神经网络子层(FFN)
  • 每个子层都有残差连接和层归一化

3.2 解码器(Decoder)

同样由N个相同层堆叠

每层包含:

  • 掩码多头自注意力子层(防止看到未来信息)
  • 多头注意力子层(关注编码器输出)
  • 前馈神经网络子层
  • 每个子层都有残差连接和层归一化

3.3 前馈神经网络(FFN)

每层的FFN通常由两个线性变换和ReLU激活组成:

FFN(x) = max(0, xW1 + b1)W2 + b2

4、 Transformer的优势

  1. 并行计算:不像RNN需要顺序处理,Transformer可以并行处理整个序列
  2. 长距离依赖:自注意力可以直接连接序列中任意距离的两个位置
  3. 可解释性:注意力权重可以直观展示模型关注了输入的哪些部分
  4. 灵活性:可以处理不同长度的输入和输出

5、 Transformer的变体

自原始Transformer提出后,出现了许多改进版本:

  • BERT:仅使用编码器的双向模型,通过掩码语言模型预训练
  • GPT:仅使用解码器的自回归模型
  • T5:将各种NLP任务统一为文本到文本格式
  • Vision Transformer:将Transformer应用于计算机视觉任务
  • Swin Transformer:引入层次化设计和滑动窗口的高效视觉Transformer

6、实现要点

在实际实现Transformer时需要注意:

  1. 学习率调度:通常使用warmup策略
  2. 正则化:常用dropout和标签平滑
  3. 批处理:对长度不同的序列需要padding和mask
  4. 优化器:常用Adam或AdamW

7、 应用场景

Transformer已广泛应用于:

  • 机器翻译
  • 文本摘要
  • 问答系统
  • 文本生成
  • 语音识别
  • 图像识别

Q、K、V代表什么?

QKV:Transformer的基石

在LLM的文本生成过程中,Q、K、V是注意力机制的核心概念,广泛应用于Transformer架构中。简单来说,它们就像一个高效的信息筛选和整合系统,帮助模型决定“接下来该说什么”。

Q(Query,查询)

Query代表当前正在处理的词或词组。想象你在写文章,写到一半时停下来思考:“接下来这个词应该跟前面的哪些内容有关?”在自注意力机制中,每个词都会被当作一个Query。对于文本生成任务,Query通常是模型已经生成的词,我们的目标是通过它来“询问”上下文,找出与它最相关的部分,以便生成下一个词。例如,在生成“欢迎关注智能体AI公众号”这句话时,当模型生成到“公众号”这个词时,它会将“公众号”作为Query,去寻找前面的上下文中与它最相关的词,从而决定接下来生成什么词。

K(Key,键)

Key是一组候选词或词组,用来跟Query进行“匹配”。在自注意力机制中,每个词同时也扮演Key的角色。模型会通过计算Query和每个Key之间的相似度(通常用点积等方法),得出一个“注意力分布”。这个分布告诉你:对于当前的Query,哪些词更重要,哪些词可以稍微忽略。例如,当“公众号”作为Query时,前面的“欢迎”、“关注”、“智能体”、“AI”等词都作为Key,模型会计算“公众号”与这些Key之间的相似度,从而决定哪些词对生成下一个词更有帮助。

V(Value,值)

Value跟Key是一对一对应的,它代表每个候选词的实际语义信息。一旦模型通过Query和Key算出了注意力分布,就用这个分布对所有的Value进行加权求和,最终得到一个“上下文表示”。这个表示就像一个信息融合的结果,包含了与当前Query最相关的内容,模型会用它来决定下一个词是什么。例如,假设模型计算出“公众号”与“智能体”这个词的相似度最高,那么“智能体”的Value就会在加权求和中占据更重要的权重,从而影响下一个词的生成。

简单总结一下:Query负责提问,Key负责匹配,Value负责提供答案。三者合作,让模型能够动态关注最重要的信息。这种机制不仅提高了模型的效率,还使其能够更好地捕捉上下文中的语义关系,从而生成更连贯、更自然的文本。

QKV在Transformer中的工作机制

Transformer是现代LLM的支柱架构,而Q、K、V正是它的核心引擎。在Transformer的自注意力层中,输入的词序列(比如一句话)首先会被转换成三个矩阵:Q矩阵、K矩阵和V矩阵。这三个矩阵的形状通常是“序列长度×隐藏层大小”。接下来,模型会执行以下步骤:

计算相似度

把Q矩阵和K矩阵的转置相乘,计算出每个Query和Key之间的相似度。为了避免数值过大,通常会除以一个缩放因子(一般是隐藏层大小的平方根)。这个步骤是自注意力机制的核心,它决定了模型如何关注上下文中的不同部分。通过计算Query和Key之间的点积,模型可以量化每个词之间的相关性,从而为后续的注意力权重计算提供基础。

生成注意力权重

通过Softmax函数,把相似度转化为注意力权重,确保所有权重加起来等于1。Softmax函数的作用是将相似度矩阵中的每个元素归一化为一个概率值,这样每个Query对每个Key的注意力权重都在0到1之间,并且所有权重的总和为1。这一步骤确保了模型在关注不同部分时,能够合理分配权重,避免某些部分被过度关注或忽略。

加权求和

用这些权重对V矩阵进行加权求和,得到最终的输出表示。这个输出表示是模型对当前Query的上下文理解的总结,它融合了与Query最相关的信息。通过加权求和,模型能够将不同部分的信息结合起来,生成一个综合的上下文表示,从而为下一步的词生成提供依据。

在文本生成任务中,Transformer的解码器会拿前面已经生成的词作为Query,去跟编码器的输出(或解码器自己的隐藏状态,作为Key和Value)互动,一步步生成后续的词。这个过程会不断循环,直到生成一个结束标志(比如“”)或者达到预设的最大长度。这种循环机制使得模型能够逐步构建出完整的文本序列,每一步都基于前面的生成结果和上下文信息,从而保证生成文本的连贯性和逻辑性。

QKV如何生成连贯文本

为了让大家更直观地理解,我们用一个具体的例子来看看Q、K、V是怎么工作的。假设我们给模型一个提示:“欢迎关注智能体AI公众号”,希望它接着生成后续的文本,比如“,这里有最前沿的AI资讯”。现在,我们聚焦在生成“这里”这个词的瞬间。生成过程的两个阶段:预填充(Prefill)和采样(Sampling)。

预填充阶段

在这个阶段,模型会根据前面的上下文(“欢迎关注智能体AI公众号”)和它学到的语言规律,预测下一个词的可能性。换句话说,它会用Q、K、V机制计算出一个概率分布,告诉你每个候选词(比如“这里”、“欢迎”、“关注”等)的可能性有多大。在我们的例子中,模型发现“这里”是个高概率的词,因为“公众号这里”可以自然地引出对公众号的介绍。这个阶段的关键在于模型如何利用Q、K、V机制来评估不同词的生成概率。模型会通过计算Query和Key之间的相似度,并结合Value的信息,生成一个综合的概率分布,从而为下一步的采样提供依据。

采样阶段

有了概率分布,模型会从中“挑”一个词出来。怎么挑呢?有几种常见方法:贪婪采样:直接选概率最高的词(比如“这里”)。随机采样:根据概率随机抽一个词,增加多样性。束搜索:保留几个高概率的候选序列,继续往下生成。在这个例子中,我们假设模型选了“这里”,把它加到序列里,然后重复这个过程去预测下一个词。采样阶段决定了模型生成文本的具体内容,不同的采样方法会对生成结果的多样性和质量产生影响。贪婪采样虽然生成的文本可能更连贯,但容易陷入局部最优;而随机采样和束搜索则可以在一定程度上增加生成文本的多样性,避免模型生成过于单一的内容。

QKV的具体计算过程

让我们深入看看生成“这里”时,Q、K、V是怎么协作的。模型把“这里”的嵌入向量当作Query(Q),把前面的词“欢迎”、“关注”、“智能体”、“AI”、“公众号”等的嵌入向量分别当作Key(K)和Value(V)。接下来,模型会执行以下步骤:

计算Query和Key的相似度

模型会计算Query和每个Key之间的点积,得到一个相似度矩阵。这个矩阵的每个元素表示Query和对应Key的相似度。例如,模型会计算“这里”与“欢迎”、“关注”、“智能体”、“AI”、“公众号”等词的相似度,从而得到一个相似度矩阵。这个矩阵中的每个值都反映了“这里

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

### 如何使用vLLM部署Qwen2-VL模型的开发者而言,可以参考一系列详尽的学习资源和教程[^1]。这些资料不仅涵盖了理论知识还提供了实际操作指南。 #### 安装依赖库 首先需安装必要的Python包以支持后续工作: ```bash pip install torch transformers vllm ``` #### 加载预训练模型 通过Hugging Face Transformers加载指定版本的Qwen2-VL模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "Qwen/Qwen-7B" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 初始化vLLM引擎并启动服务端口 创建基于所选配置文件初始化vLLM实例,并设置HTTP服务器监听特定地址与端口号以便接收请求: ```python import uvicorn from fastapi import FastAPI from pydantic import BaseModel from typing import List from vllm.engine.arg_utils import AsyncEngineArgs from vllm.engine.async_llm_engine import AsyncLLMEngine app = FastAPI() engine_args = AsyncEngineArgs(model=model_name_or_path) engine = await AsyncLLMEngine.from_engine_args(engine_args) class Request(BaseModel): prompt: str max_tokens: int @app.post("/generate") async def generate(request: Request): output = await engine.generate(prompt=request.prompt, max_tokens=request.max_tokens) return {"result": output} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000) ``` 此段代码展示了如何构建一个简单的Web API接口用于远程调用生成功能[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值