yolov5添加SimAM注意力机制(非通道数注意力)

本文介绍了如何在YOLOv5中添加SimAM注意力机制,该机制无需考虑通道数,可以在任意层应用。步骤包括创建新模块文件、添加代码、修改配置文件以及解决训练过程中的错误。
摘要由CSDN通过智能技术生成

SimAM注意力机制简介

 关于SIMAM注意力机制的原理这里不再详细解释,这篇发在Proceeddings of the 38th Internation Conference on Machine Learning.论文参考如下论文链接here

yolov5中添加SimAM注意力机制

  注意力机制分为接收通道数和不接受通道数两种。这次属于不接受通道数注意力机制,这种注意力机制由于没有任何的通道数要求,所以我们可以随便添加到那一层就可以,不用考虑上一层的通道数情况。

第一步:在models的文件夹下新建一个.py文件,格式为我们(注意力机制名字.py),如下图所示

在这里插入图片描述

第二步:添加官方提供的注意力机制代码,这里我提供给大家
SimAM.py


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

书中藏着宇宙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值