1. 介绍
SimAM(Simple Attention Module)是一种简单、无参数的注意力机制,可用于卷积神经网络(CNN)。与其他注意力机制不同,SimAM 不需要引入额外的参数,因此计算成本更低、部署更方便。SimAM 已被证明可以有效提高 CNN 的性能,特别是在目标检测任务中。
YOLOv8 是 Ultralytics 公司于 2022 年 8 月推出的最新一代目标检测算法。YOLOv8 在 YOLOv5 的基础上进行了大量改进,包括引入了 SimAM 注意力机制。SimAM 的引入进一步提升了 YOLOv8 的性能,使其在 COCO 数据集上的 mAP 指标达到了 61.7%。
2. 原理详解
SimAM 的基本原理是利用特征图中的全局信息来增强局部特征的表征能力。具体来说,SimAM 的工作流程如下:
- **计算全局特征:**使用全局平均池化操作提取特征图的全局特征。
- **计算局部特征:**对每个像素点进行计算,得到该像素点的局部特征。
- **计算注意力权重:**使用全局特征和局部特征进行计算,得到每个像素点的注意力权重。
- **加权融合:**使用注意力权重对局部特征进行加权融合,得到最终的特征表示。
SimAM 的计算公式如下:
A(x) = σ(W * g(x) &