扩散模型中采样过程(Sampling Process)的详细步骤和算法

在这里插入图片描述

这张图片展示了在扩散模型中采样过程(Sampling Process)的详细步骤和算法。

采样算法(Algorithm 2 Sampling)

该算法展示了如何从噪声中逐步生成图像。

步骤解析:
  1. 初始化

    • 从标准正态分布 N ( 0 , I ) \mathcal{N}(0, I) N(0,I)中采样初始噪声图像 x T x_T xT
    • 这个图像 x T x_T xT是完全噪声化的。
  2. 逐步去噪

    • 从时间步 T T T开始,逐步向前推进到时间步 1 1 1
    • 对于每个时间步 t t t,执行以下操作:
  3. 噪声采样

    • 采样噪声 z ∼ N ( 0 , I ) z \sim \mathcal{N}(0, I) zN(0,I),如果 t > 1 t > 1 t>1则从标准正态分布中采样,否则设为零。
  4. 更新公式

    • 使用以下公式更新 x t − 1 x_{t-1} x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值