Efficiently Modeling Long Sequences with Structured State Spaces————Abstract

在序列建模中,一个核心目标是设计一个能够跨越多种模态和任务的统一模型,特别是在处理长距离依赖关系时。虽然传统模型如RNNs(递归神经网络)、CNNs(卷积神经网络)和Transformers都有专门的变种来捕捉长距离依赖关系,但它们在处理超过10000步的非常长序列时仍然面临挑战。最近提出的一种有前景的方法是通过模拟基本的状态空间模型(SSM)来建模序列,该模型形式化如下:

x ˙ ( t ) = A x ( t ) + B u ( t ) , \dot{x}(t) = Ax(t) + Bu(t), x˙(t)=Ax(t)+Bu(t),
y ( t ) = C x ( t ) + D u ( t ) , y(t) = Cx(t) + Du(t), y(t)=Cx(t)+Du(t),

研究表明,通过适当选择状态矩阵A,这个系统可以在数学上和经验上处理长距离依赖关系。然而,这种方法的计算和内存需求过高,作为一种通用的序列建模解决方案是不现实的。

我们提出了结构化状态空间序列模型(S4),基于对SSM的新参数化,显示出比先前的方法计算更高效,同时保留了它们的理论优势。我们的技术包括对矩阵A进行低秩校正,使其可以稳定地对角化,并将SSM简化为熟知的柯西核计算。

具体数据举例说明

  1. CIFAR-10数据集上的性能
    在没有数据增强或辅助损失的情况下,S4在顺序CIFAR-10数据集上实现了91%的准确率,这与一个更大的二维ResNet模型的表现相当。

  2. 图像和语言建模任务中的表现
    S4大大缩小了与Transformers在图像和语言建模任务上的差距,同时生成速度快了60倍。

  3. Long Range Arena基准测试中的表现
    在所有任务上,S4都达到了最新的性能(SoTA),包括解决了长度为16k的挑战性Path-X任务,这是所有先前工作都未能完成的,同时其效率与所有竞争对手相当。

详细解释

长距离依赖关系处理能力
S4通过对SSM进行低秩校正,使得矩阵A可以被稳定地对角化,这样就可以用柯西核的计算来简化SSM。这个过程极大地降低了计算复杂度和内存需求,同时保持了处理长距离依赖关系的能力。

低秩校正与柯西核计算
低秩校正涉及将矩阵A分解为一个对角矩阵加上一个低秩矩阵,这使得对角化过程更稳定。柯西核是一种数学函数,用于解决特定类型的积分问题,在这里它用于简化状态空间模型的计算。

具体实验结果

  • Sequential CIFAR-10: 在顺序处理的CIFAR-10数据集中,S4达到了91%的准确率,而不需要任何数据增强或辅助损失。这一结果与一个更大的二维ResNet模型的表现相当,但S4的计算效率更高。
  • 图像和语言建模: 在这些任务中,S4不仅性能接近Transformers,而且在生成速度上快了60倍。这意味着在实际应用中,S4可以更快速地处理大量数据。
  • Long Range Arena: 在这一基准测试中,S4在所有任务上都达到了最新的性能标准,尤其是在长度为16k的Path-X任务中,S4是第一个成功完成这一任务的模型。

通过以上解释和具体数据例子,可以看出S4在处理长距离依赖关系的序列数据上具有显著的优势,同时其计算和内存需求大大降低,具备很高的实际应用价值。

  • 12
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值