Efficiently Modeling Long Sequences with Structured State Spaces————Abstract

在序列建模中,一个核心目标是设计一个能够跨越多种模态和任务的统一模型,特别是在处理长距离依赖关系时。虽然传统模型如RNNs(递归神经网络)、CNNs(卷积神经网络)和Transformers都有专门的变种来捕捉长距离依赖关系,但它们在处理超过10000步的非常长序列时仍然面临挑战。最近提出的一种有前景的方法是通过模拟基本的状态空间模型(SSM)来建模序列,该模型形式化如下:

x ˙ ( t ) = A x ( t ) + B u ( t ) , \dot{x}(t) = Ax(t) + Bu(t),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值