引言
肿瘤的早期检测对于治疗效果和患者生存率至关重要。在医学影像中,肿瘤的检测通常依赖于专家的人工诊断。然而,由于医学影像数据的庞大和复杂性,人工诊断容易受到疲劳、经验限制和主观因素的影响,且效率较低。近年来,深度学习尤其是卷积神经网络(CNN)在医学影像处理领域展现出了强大的潜力。
本文将介绍基于YOLO(You Only Look Once)系列深度学习模型(包括YOLOv5、YOLOv6、YOLOv7、YOLOv8)构建一个肿瘤图像检测系统。我们将从数据集构建、模型训练、模型推理、实时检测到UI界面设计,全面解析如何通过深度学习实现肿瘤图像的自动检测。
目录
1. 项目概述
本项目的目标是开发一个肿瘤图像检测系统,能够自动识别医学图像(如CT扫描、MRI、X光图像等)中的肿瘤位置,并给出预测结果。该系统的关键模块包括:
- 数据集构建与预处理:获取并处理肿瘤图像数据集。
- 模型训练:使用YOLO系列模型进行肿瘤检测的训练。
- 实时检测与推理:通过摄像头或图片实时进行肿瘤检测。