项目背景
考试作弊是教育领域中的一大问题,它不仅影响学生的公平性,也降低了考试的信任度。传统的作弊检测方式依赖于监考人员的人工巡视,但由于监考人员数量有限,且考场环境复杂,人工检测容易出现疏漏。因此,借助现代深度学习技术,通过视频监控实时检测考场中的作弊行为,成为一种有效的解决方案。
本项目旨在设计一个基于YOLOv5目标检测算法的考试作弊行为检测系统,通过摄像头实时捕捉考场画面,利用深度学习模型对作弊行为进行识别和标注。此外,本系统还将提供一个用户友好的UI界面,便于监考人员实时查看检测结果。本文将详细介绍如何实现这一系统,包括数据集的准备、模型训练、UI界面设计、系统优化等。
技术概述
YOLOv5 简介
YOLO(You Only Look Once)是一种广泛应用的目标检测算法,其特点是将目标检测问题转化为回归问题,在保证高精度的同时,具有很好的实时性能。YOLOv5是YOLO系列中的一种高效版本,它在准确度和速度方面都有很好的平衡,适合实时检测应用。
YOLOv5的工作原理是通过一个卷积神经网络(CNN)来对图像进行特征提取,然后在每个网格中预测该位置包含的目标类别和边界框。YOLOv5特别适用于需要实时处理视频流的场景,