1. 引言
随着人工智能和深度学习技术的飞速发展,计算机视觉在体育、娱乐等领域的应用已经得到了广泛关注。舞蹈与运动中的动作识别作为计算机视觉的一个重要研究方向,正在为舞蹈编排、运动训练、健康管理等多个领域提供技术支持。在这些应用中,准确识别舞者的动作和姿态不仅能够提高训练效率,还能够用于实时监控和反馈。
在本项目中,我们将基于YOLOv5(You Only Look Once version 5)目标检测模型实现舞蹈与运动中的动作识别。具体来说,我们将通过YOLOv5对舞者的姿态、动作以及舞蹈过程中的各个关键环节进行实时识别与分类,形成一个能够监控舞蹈与运动动作的自动化系统。此外,我们将结合深度学习与UI界面,实时显示动作识别结果,进一步提升用户体验。
2. YOLOv5概述
YOLOv5是由Ultralytics开发的目标检测模型,基于深度卷积神经网络(CNN)进行目标检测。它属于单阶段检测器,相较于传统的两阶段目标检测器(如Faster R-CNN),YOLOv5速度更快,能够实时处理图像和视频流。YOLOv5的优点包括:
- 速度与精度:YOLOv5提供了一种高效且精准的检测方式,适合实时处理。
- 端到端训练</