一、前言
行人检测是计算机视觉领域中的一项重要任务,广泛应用于自动驾驶、视频监控、智能交通等领域。随着深度学习技术的发展,行人检测的精度和实时性有了显著提升。YOLO(You Only Look Once)系列模型,以其高效的实时目标检测能力,成为了行人检测领域的热门选择之一。YOLOv10作为YOLO系列的最新版本,具有更高的准确度和速度,使得行人检测变得更加精准和高效。
本博客将围绕Pedestrian Detection 2015数据集,基于YOLOv10进行行人检测的实现,并设计一个用户界面(UI)来展示检测结果。我们将从数据预处理、YOLOv10模型训练、评估指标、UI实现等方面详细讲解,并提供完整的代码和参考数据集。
二、Pedestrian Detection 2015 数据集介绍
Pedestrian Detection 2015 数据集是用于行人检测的经典数据集,包含了大量带有行人标注的图片。该数据集主要用于评估行人检测算法的性能,尤其是在复杂背景下行人的识别能力。
数据集的特点:
- 类别:主要包含1个类别——行人。
- 图像尺寸:图像分