1. 引言
随着智能交通系统(ITS, Intelligent Transportation Systems)的快速发展,交通图像的自动分析和处理成为了研究的热点。交通图像中包含了丰富的交通信息,诸如行人、车辆、交通信号灯、车道标志等,如何通过深度学习模型快速而准确地提取这些信息,对于实现智能交通管理、交通安全预警等功能具有重要意义。
TIDE(Traffic Image Dataset for Evaluation)数据集是一个专门用于交通图像目标检测和评估的数据集,涵盖了多种交通场景,包含了行人、车辆、交通信号灯等多种类别。该数据集适用于训练和评估目标检测模型,尤其是在复杂交通环境下的表现。
本文将介绍如何基于YOLOv10模型,结合TIDE数据集进行交通图像的目标检测,并展示如何通过UI界面实现实时检测。我们将详细讲解从数据预处理、模型训练到目标检测实现的完整流程,并提供详细的代码和实现细节。
2. TIDE数据集概述
TIDE 是一个交通图像目标检测和评估数据集,旨在为交通场景中的目标检测任务提供标准化的基准数据。该数据集包含10个类别,适用于多种目标检测任务。数据集中的图像均来自不同的交通环境,目标标注为矩形边界框,适合训练目标检测模型。