1. 引言
无人便利店的出现改变了传统零售行业的运营模式,它不仅能降低人工成本,还能提高购物体验。然而,无人便利店在提供便利的同时,也面临着商品盗损和未支付等安全问题。这些问题不仅损害了商家的利益,还可能影响顾客的购物体验。为了解决这些问题,智能监控系统应运而生。通过实时监控顾客行为,并利用计算机视觉技术来识别商品的盗损和未支付行为,商家能够实时发现问题并采取相应的措施。
本博客将介绍如何使用YOLOv10目标检测算法,在无人便利店中实现商品盗损和未支付行为的监控。我们将设计一个完整的解决方案,包括数据集准备、YOLOv10模型训练、行为检测、UI界面展示等内容,帮助商家更好地管理库存和提升安全性。
2. 项目目标
本项目的主要目标是设计一个能够检测商品盗损和未支付行为的智能监控系统。该系统的具体功能包括:
- 商品盗损检测:实时识别顾客是否有意将商品藏匿或放入包内未付款。
- 未支付行为检测:判断顾客是否未按流程结账,或者在离开商店前未支付所拿商品。
- YOLOv10目标检测:利用YOLOv10算法准确识别商品和顾客。
- UI界面展示: