基于YOLOv8的内窥镜病灶实时标记系统设计与实现

1. 项目背景与研究意义

内窥镜检查是胃肠道、呼吸道等内部器官病灶(如息肉、肿瘤)检测的标准诊断方法。医生通过观察内窥镜图像判断病灶位置,进行及时处理。

然而,病灶形态复杂且易被忽略,尤其对于初学医生或长时间工作疲劳的专家,漏诊风险较高。基于深度学习的自动实时标注系统,能够辅助医生快速准确定位病灶,显著提升诊断效率与准确率。

YOLOv8以其优异的速度和准确性,极适合内窥镜图像的实时目标检测需求。


2. 内窥镜病灶检测的挑战

  • 病灶形态多样且细小,边界不明显。
  • 内窥镜图像质量受光线、模糊影响大
  • 图像中病灶与周围正常组织对比低,识别难度大。
  • 实时性要求高,检测系统需保证低延迟。

3. 技术路线与系统架构设计

技术路线

  • 数据集采集与标注
  • 数据增强与预处理
  • YOLOv8预训练模型微调训练
  • 模型性能评估
  • 基于Python及Tkinter开发实时检测UI,支持摄像头视频流和图像文件输入
  • 系统集成与测试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值