1. 项目背景与研究意义
内窥镜检查是胃肠道、呼吸道等内部器官病灶(如息肉、肿瘤)检测的标准诊断方法。医生通过观察内窥镜图像判断病灶位置,进行及时处理。
然而,病灶形态复杂且易被忽略,尤其对于初学医生或长时间工作疲劳的专家,漏诊风险较高。基于深度学习的自动实时标注系统,能够辅助医生快速准确定位病灶,显著提升诊断效率与准确率。
YOLOv8以其优异的速度和准确性,极适合内窥镜图像的实时目标检测需求。
2. 内窥镜病灶检测的挑战
- 病灶形态多样且细小,边界不明显。
- 内窥镜图像质量受光线、模糊影响大。
- 图像中病灶与周围正常组织对比低,识别难度大。
- 实时性要求高,检测系统需保证低延迟。
3. 技术路线与系统架构设计
技术路线
- 数据集采集与标注
- 数据增强与预处理
- YOLOv8预训练模型微调训练
- 模型性能评估
- 基于Python及Tkinter开发实时检测UI,支持摄像头视频流和图像文件输入
- 系统集成与测试