1. 项目背景
口腔健康直接影响全身健康,龋齿和种植体定位是牙科诊断和治疗的重要环节。传统手工影像诊断依赖经验丰富的牙科医生,效率受限且易受主观因素影响。借助深度学习技术,特别是目标检测方法,实现自动、精准的龋齿及种植体定位,具有重要的临床和商业价值。
本项目基于YOLOv8,结合牙科X光片、CT等影像数据,构建一套自动化影像分析系统,辅助医生诊断,提高诊疗效率。
2. 牙科影像分析技术难点
- 影像复杂性高:牙科影像存在重叠、噪声和低对比度问题
- 目标尺寸及形态差异大:龋齿小且形态复杂,种植体形态多样
- 数据标注难度:专业性强,需牙医辅助准确标注
- 实时性需求:临床应用需要快速反馈
3. 目标检测在牙科中的应用基础
目标检测技术能够在二维影像中定位感兴趣区域,是牙科影像分析的理想方法。它不仅能够定位,还能分类不同类型病灶(如龋齿、种植体、其他病变),为进一步诊断提供依据。
YOLOv8作为最新一代单阶段检测器,在速度和精度上均表现