摘要
在现代零售业中,货架商品的准确识别和库存管理对于提升运营效率和顾客体验至关重要。传统的库存盘点方式耗时费力,容易出错。借助深度学习中的目标检测技术,尤其是YOLOv8模型,可以实现货架商品的实时自动识别,结合库存管理系统,实现自动补货提醒功能,大幅提升供应链效率和管理智能化水平。
本文详细介绍了基于YOLOv8的货架商品识别系统的设计与实现。内容包括系统设计思路、数据集的选择与准备、YOLOv8模型训练过程、UI界面开发、库存管理及补货提醒算法设计,并附上完整代码实现。最后,通过实验结果展示系统的实际效果和应用前景。
目录
- 研究背景与意义
- 相关技术概述
- 数据集准备
- YOLOv8模型介绍
- 系统设计架构
- 数据预处理与增强
- 模型训练与调优
- UI界面设计与实现
- 自动补货提醒逻辑设计
- 代码实现详解
- 实验结果与性能评估
- 结论与未来展望
- 参考资料
1. 研究背景与意义
货架商品识别是零售智能化的关键环节。传统的盘点多依赖人工扫描条码或人工目测,效率低且易出错。深度学习目标检测技术,尤其是YOLO系列模型,以其高效的实时性能和优异的准确率,成为零售行业自动化