一、背景介绍
在农业生产和仓库管理中,动物入侵是一个常见且棘手的问题。野生动物、害虫或者流浪动物进入农场、粮仓或养殖场,不仅会破坏作物和存储的物资,还可能传播疾病,导致经济损失甚至安全隐患。因此,构建一个自动化的、基于计算机视觉的动物入侵监测系统具有重要意义。
传统的监控依赖人眼监视,效率低、准确率差。借助深度学习目标检测技术,可以实现对入侵动物的实时识别与告警。本文将介绍如何使用YOLOv8这一当前最先进的目标检测模型,实现动物的自动检测,并结合Python的GUI库设计一个简洁易用的用户界面。
二、系统设计思路
2.1 总体框架
- 数据采集与处理:收集动物图像或视频,标注入侵动物的位置和类别,制作数据集。
- 模型训练:基于YOLOv8模型结构,对数据集进行训练,实现精准的动物检测。
- 推理部署:模型导出为推理权重,完成实时或离线检测。
- UI界面设计:开发友好易用的界面,用户可上传视频或调用摄像头进行监测,显示检测结果。
- 告警功能:检测到动物