雅可比矩阵及其有关的线性化

雅可比矩阵及其有关的线性化

1、雅可比矩阵是什么

​ 考虑向量方程对向量的导数:

​ 设: f ⃗ ( y ⃗ ) = [ f 1 ( y ⃗ ) f 2 ( y ⃗ ) ⋮ f n ( y ⃗ ) ] n × 1 \vec{f}\left(\vec{y}\right)=\left[\begin{matrix}\begin{matrix}f_1\left(\vec{y}\right)\\f_2\left(\vec{y}\right)\\\end{matrix}\\\begin{matrix}\vdots\\f_n\left(\vec{y}\right)\\\end{matrix}\\\end{matrix}\right]_{n\times 1} f (y )= f1(y )f2(y )fn(y ) n×1 y ⃗ = [ y 1 y 2 ⋮ m ] m × 1 \vec{y}=\left[\begin{matrix}\begin{matrix}y_1\\y_2\\\end{matrix}\\\begin{matrix}\vdots\\m\\\end{matrix}\\\end{matrix}\right]_{m\times1} y = y1y2m m×1

​ 当其按照分子布局展开时即为雅可比矩阵

∂ f ⃗ ( y ⃗ ) n × 1 ∂ y ⃗ m × 1 = [ ∂ f 1 ( y ⃗ ) ∂ y 1 ∂ f 1 ( y ⃗ ) ∂ y 2 … ∂ f 1 ( y ⃗ ) ∂ y m ⋮ ⋮ ∂ f n ( y ⃗ ) ∂ y 1 ⋱ ∂ f n ( y ⃗ ) ∂ y 2 ⋱ … ⋮ ⋮ ∂ f n ( y ⃗ ) ∂ y m ] n × m \frac{{\partial\vec{f}\left(\vec{y}\right)}_{n\times1}}{{\partial\vec{y}}_{m\times1}}=\left[\begin{matrix}\begin{matrix}\frac{\partial f_1\left(\vec{y}\right)}{\partial y_1}&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_2}\\\end{matrix}&\begin{matrix}\ldots&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_m}\\\end{matrix}\\\begin{matrix}\begin{matrix}\vdots\\\begin{matrix}\vdots\\\frac{\partial f_n\left(\vec{y}\right)}{\partial y_1}\\\end{matrix}\\\end{matrix}&\begin{matrix}\ddots\\\begin{matrix}\\\frac{\partial f_n\left(\vec{y}\right)}{\partial y_2}\\\end{matrix}\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\\\begin{matrix}\ddots\\\ldots\\\end{matrix}\\\end{matrix}&\begin{matrix}\vdots\\\begin{matrix}\vdots\\\frac{\partial f_n\left(\vec{y}\right)}{\partial y_m}\\\end{matrix}\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]_{n\times m} y m×1f (y )n×1= y1f1(y )y2f1(y )y1fn(y )y2fn(y )ymf1(y )ymfn(y ) n×m

考虑一个例子: f ⃗ ( y ⃗ ) = [ f 1 ( y ⃗ ) f 2 ( y ⃗ ) ] = [ y 1 2 + y 2 2 + y 3 y 0 2 + 2 y 1 ] 2 × 1 \vec{f}\left(\vec{y}\right)=\left[\begin{matrix}f_1\left(\vec{y}\right)\\f_2\left(\vec{y}\right)\\\end{matrix}\right]=\left[\begin{matrix}y_1^2+y_2^2+y_3\\y_0^2+2y_1\\\end{matrix}\right]_{2\times1} f (y )=[f1(y )f2(y )]=[y12+y22+y3y02+2y1]2×1 y ⃗ = [ y 1 y 2 y 3 ] 3 × 1 \vec{y}=\left[\begin{matrix}\begin{matrix}y_1\\y_2\\\end{matrix}\\y_3\\\end{matrix}\right]_{3\times1} y = y1y2y3 3×1

求偏导得: f ⃗ ( y ⃗ ) = [ ∂ f 1 ( y ⃗ ) ∂ y 1 ∂ f 1 ( y ⃗ ) ∂ y 2 ∂ f 1 ( y ⃗ ) ∂ y 3 ∂ f 2 ( y ⃗ ) ∂ y 1 ∂ f 2 ( y ⃗ ) ∂ y 2 ∂ f 2 ( y ⃗ ) ∂ y 3 ] = [ 2 y 1 2 y 2 1 2 0 2 y 3 ] 2 × 3 \vec{f}\left(\vec{y}\right)=\left[\begin{matrix}\frac{\partial f_1\left(\vec{y}\right)}{\partial y_1}&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_2}&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_3}\\\frac{\partial f_2\left(\vec{y}\right)}{\partial y_1}&\frac{\partial f_2\left(\vec{y}\right)}{\partial y_2}&\frac{\partial f_2\left(\vec{y}\right)}{\partial y_3}\\\end{matrix}\right]=\left[\begin{matrix}2y_1&2y_2&1\\2&0&2y_3\\\end{matrix}\right]_{2\times3} f (y )=[y1f1(y )y1f2(y )y2f1(y )y2f2(y )y3f1(y )y3f2(y )]=[2y122y2012y3]2×3


2、利用雅可比进行线性化

​ 考虑二维情况在平衡点处线性化

x ˙ 1 = f 1 ( x 1 , x 2 )       ⇒ {\dot{x}}_1=f_1\left(x_1,x_2\right)\ \ \ \ \ \Rightarrow x˙1=f1(x1,x2)      [ x 1 d ˙ x 2 d ˙ ] = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] x = x 0 [ x 1 d x 2 d ] \left[\begin{matrix}\dot{x_{1d}}\\\dot{x_{2d}}\\\end{matrix}\right]=\left[\begin{matrix}\frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}\\\frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}\\\end{matrix}\right]_{x=x_0}\left[\begin{matrix}x_{1d}\\x_{2d}\\\end{matrix}\right] [x1d˙x2d˙]=[x1f1x1f2x2f1x2f2]x=x0[x1dx2d]

x ˙ 2 = f 2 ( x 1 , x 2 )       ⇒ {\dot{x}}_2=f_2\left(x_1,x_2\right)\ \ \ \ \ \Rightarrow x˙2=f2(x1,x2)     

中间的偏导矩阵为雅可比矩阵

来个例子: x ¨ + x ˙ + 1 x = 1 \ddot{x}+\dot{x}+\frac{1}{x}=1 x¨+x˙+x1=1

​ 令 x 1 = x x_1=x x1=x x 2 = x ˙ x_2={\dot{x}} x2=x˙

​ 得到状态空间方程 x ˙ 1 = x 2 {\dot{x}}_1=x_2 x˙1=x2

x ˙ 2 = x ¨ = 1 − 1 x − x ˙ = 1 − 1 x 1 − x 2 \dot{x}_2=\ddot{x}=1-\frac{1}{x}-\dot{x}=1-\frac{1}{x_1}-x_2 x˙2=x¨=1x1x˙=1x11x2

​ 寻找其平衡点:令 x ˙ 1 = 0 {\dot{x}}_1=0 x˙1=0 x ˙ 2 = 0 {\dot{x}}_2=0 x˙2=0 可得:

x 10 = 1 , x 20 = 0 x_{10}=1,x_{20}=0 x10=1,x20=0

​ 代入公式得: [ x 1 d ˙ x 2 d ˙ ] = [ 0 1 − ( − 1 x 1 2 ) − 1 ] x 0 [ x 1 d x 2 d ] = [ 0 1 1 − 1 ] [ x 1 d x 2 d ] \left[\begin{matrix}\dot{x_{1d}}\\\dot{x_{2d}}\\\end{matrix}\right]=\left[\begin{matrix}0&1\\-\left(-\frac{1}{x_1^2}\right)&-1\\\end{matrix}\right]_{x_0}\left[\begin{matrix}x_{1d}\\x_{2d}\\\end{matrix}\right]=\left[\begin{matrix}0&1\\1&-1\\\end{matrix}\right]\left[\begin{matrix}x_{1d}\\x_{2d}\\\end{matrix}\right] [x1d˙x2d˙]=[0(x121)11]x0[x1dx2d]=[0111][x1dx2d]

​ 此时, x 2 d ˙ = x 1 d − x 2 d \dot{x_{2d}}=x_{1d}-x_{2d} x2d˙=x1dx2d

​ 又因为 x d ¨ = x 2 d ˙ \ddot{x_d}=\dot{x_{2d}} xd¨=x2d˙ x d = x 1 d x_d=x_{1d} xd=x1d x d ˙ = x 2 d \dot{x_d}=x_{2d} xd˙=x2d

​ 所以,可得 x d ¨ + x d ˙ − x d = 0 \ddot{x_d}+\dot{x_d}-x_d=0 xd¨+xd˙xd=0

完成线性化!

要在非root用户下安装FastDFS,您需要遵循以下步骤: 1. 创建一个非root用户,例如fastdfs。 2. 安装必要的软件包和依赖项,例如gcc、make、libevent-dev、libjpeg-dev、libpng-dev、libxml2-dev、libcurl4-openssl-dev等。可以使用以下命令安装: ``` sudo apt-get update sudo apt-get install gcc make libevent-dev libjpeg-dev libpng-dev libxml2-dev libcurl4-openssl-dev ``` 3. 下载FastDFS源代码并解压缩,可以从官方网站下载最新版本:https://github.com/happyfish100/fastdfs/releases ``` wget https://github.com/happyfish100/fastdfs/archive/V6.06.tar.gz tar -zxvf V6.06.tar.gz ``` 4. 切换到fastdfs用户并进入源代码目录,执行以下命令编译和安装FastDFS: ``` cd fastdfs-6.06/ ./make.sh sudo ./make.sh install ``` 5. 配置FastDFS。复制配置文件模板并编辑: ``` sudo cp /etc/fdfs/tracker.conf.sample /etc/fdfs/tracker.conf sudo cp /etc/fdfs/storage.conf.sample /etc/fdfs/storage.conf sudo cp /etc/fdfs/client.conf.sample /etc/fdfs/client.conf sudo vi /etc/fdfs/tracker.conf sudo vi /etc/fdfs/storage.conf sudo vi /etc/fdfs/client.conf ``` 6. 启动Tracker和Storage服务: ``` sudo /usr/bin/fdfs_trackerd /etc/fdfs/tracker.conf sudo /usr/bin/fdfs_storaged /etc/fdfs/storage.conf ``` 7. 验证FastDFS服务是否正常工作。使用fdfs_test工具上传和下载文件进行测试: ``` sudo apt-get install git git clone https://github.com/happyfish100/fastdfs-client-java.git cd fastdfs-client-java/ sudo mvn package sudo java -jar target/fastdfs-client-java-1.27-SNAPSHOT.jar ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值