雅可比矩阵及其有关的线性化

雅可比矩阵及其有关的线性化

1、雅可比矩阵是什么

​ 考虑向量方程对向量的导数:

​ 设: f ⃗ ( y ⃗ ) = [ f 1 ( y ⃗ ) f 2 ( y ⃗ ) ⋮ f n ( y ⃗ ) ] n × 1 \vec{f}\left(\vec{y}\right)=\left[\begin{matrix}\begin{matrix}f_1\left(\vec{y}\right)\\f_2\left(\vec{y}\right)\\\end{matrix}\\\begin{matrix}\vdots\\f_n\left(\vec{y}\right)\\\end{matrix}\\\end{matrix}\right]_{n\times 1} f (y )= f1(y )f2(y )fn(y ) n×1 y ⃗ = [ y 1 y 2 ⋮ m ] m × 1 \vec{y}=\left[\begin{matrix}\begin{matrix}y_1\\y_2\\\end{matrix}\\\begin{matrix}\vdots\\m\\\end{matrix}\\\end{matrix}\right]_{m\times1} y = y1y2m m×1

​ 当其按照分子布局展开时即为雅可比矩阵

∂ f ⃗ ( y ⃗ ) n × 1 ∂ y ⃗ m × 1 = [ ∂ f 1 ( y ⃗ ) ∂ y 1 ∂ f 1 ( y ⃗ ) ∂ y 2 … ∂ f 1 ( y ⃗ ) ∂ y m ⋮ ⋮ ∂ f n ( y ⃗ ) ∂ y 1 ⋱ ∂ f n ( y ⃗ ) ∂ y 2 ⋱ … ⋮ ⋮ ∂ f n ( y ⃗ ) ∂ y m ] n × m \frac{{\partial\vec{f}\left(\vec{y}\right)}_{n\times1}}{{\partial\vec{y}}_{m\times1}}=\left[\begin{matrix}\begin{matrix}\frac{\partial f_1\left(\vec{y}\right)}{\partial y_1}&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_2}\\\end{matrix}&\begin{matrix}\ldots&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_m}\\\end{matrix}\\\begin{matrix}\begin{matrix}\vdots\\\begin{matrix}\vdots\\\frac{\partial f_n\left(\vec{y}\right)}{\partial y_1}\\\end{matrix}\\\end{matrix}&\begin{matrix}\ddots\\\begin{matrix}\\\frac{\partial f_n\left(\vec{y}\right)}{\partial y_2}\\\end{matrix}\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\\\begin{matrix}\ddots\\\ldots\\\end{matrix}\\\end{matrix}&\begin{matrix}\vdots\\\begin{matrix}\vdots\\\frac{\partial f_n\left(\vec{y}\right)}{\partial y_m}\\\end{matrix}\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]_{n\times m} y m×1f (y )n×1= y1f1(y )y2f1(y )y1fn(y )y2fn(y )ymf1(y )ymfn(y ) n×m

考虑一个例子: f ⃗ ( y ⃗ ) = [ f 1 ( y ⃗ ) f 2 ( y ⃗ ) ] = [ y 1 2 + y 2 2 + y 3 y 0 2 + 2 y 1 ] 2 × 1 \vec{f}\left(\vec{y}\right)=\left[\begin{matrix}f_1\left(\vec{y}\right)\\f_2\left(\vec{y}\right)\\\end{matrix}\right]=\left[\begin{matrix}y_1^2+y_2^2+y_3\\y_0^2+2y_1\\\end{matrix}\right]_{2\times1} f (y )=[f1(y )f2(y )]=[y12+y22+y3y02+2y1]2×1 y ⃗ = [ y 1 y 2 y 3 ] 3 × 1 \vec{y}=\left[\begin{matrix}\begin{matrix}y_1\\y_2\\\end{matrix}\\y_3\\\end{matrix}\right]_{3\times1} y = y1y2y3 3×1

求偏导得: f ⃗ ( y ⃗ ) = [ ∂ f 1 ( y ⃗ ) ∂ y 1 ∂ f 1 ( y ⃗ ) ∂ y 2 ∂ f 1 ( y ⃗ ) ∂ y 3 ∂ f 2 ( y ⃗ ) ∂ y 1 ∂ f 2 ( y ⃗ ) ∂ y 2 ∂ f 2 ( y ⃗ ) ∂ y 3 ] = [ 2 y 1 2 y 2 1 2 0 2 y 3 ] 2 × 3 \vec{f}\left(\vec{y}\right)=\left[\begin{matrix}\frac{\partial f_1\left(\vec{y}\right)}{\partial y_1}&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_2}&\frac{\partial f_1\left(\vec{y}\right)}{\partial y_3}\\\frac{\partial f_2\left(\vec{y}\right)}{\partial y_1}&\frac{\partial f_2\left(\vec{y}\right)}{\partial y_2}&\frac{\partial f_2\left(\vec{y}\right)}{\partial y_3}\\\end{matrix}\right]=\left[\begin{matrix}2y_1&2y_2&1\\2&0&2y_3\\\end{matrix}\right]_{2\times3} f (y )=[y1f1(y )y1f2(y )y2f1(y )y2f2(y )y3f1(y )y3f2(y )]=[2y122y2012y3]2×3


2、利用雅可比进行线性化

​ 考虑二维情况在平衡点处线性化

x ˙ 1 = f 1 ( x 1 , x 2 )       ⇒ {\dot{x}}_1=f_1\left(x_1,x_2\right)\ \ \ \ \ \Rightarrow x˙1=f1(x1,x2)      [ x 1 d ˙ x 2 d ˙ ] = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] x = x 0 [ x 1 d x 2 d ] \left[\begin{matrix}\dot{x_{1d}}\\\dot{x_{2d}}\\\end{matrix}\right]=\left[\begin{matrix}\frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}\\\frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}\\\end{matrix}\right]_{x=x_0}\left[\begin{matrix}x_{1d}\\x_{2d}\\\end{matrix}\right] [x1d˙x2d˙]=[x1f1x1f2x2f1x2f2]x=x0[x1dx2d]

x ˙ 2 = f 2 ( x 1 , x 2 )       ⇒ {\dot{x}}_2=f_2\left(x_1,x_2\right)\ \ \ \ \ \Rightarrow x˙2=f2(x1,x2)     

中间的偏导矩阵为雅可比矩阵

来个例子: x ¨ + x ˙ + 1 x = 1 \ddot{x}+\dot{x}+\frac{1}{x}=1 x¨+x˙+x1=1

​ 令 x 1 = x x_1=x x1=x x 2 = x ˙ x_2={\dot{x}} x2=x˙

​ 得到状态空间方程 x ˙ 1 = x 2 {\dot{x}}_1=x_2 x˙1=x2

x ˙ 2 = x ¨ = 1 − 1 x − x ˙ = 1 − 1 x 1 − x 2 \dot{x}_2=\ddot{x}=1-\frac{1}{x}-\dot{x}=1-\frac{1}{x_1}-x_2 x˙2=x¨=1x1x˙=1x11x2

​ 寻找其平衡点:令 x ˙ 1 = 0 {\dot{x}}_1=0 x˙1=0 x ˙ 2 = 0 {\dot{x}}_2=0 x˙2=0 可得:

x 10 = 1 , x 20 = 0 x_{10}=1,x_{20}=0 x10=1,x20=0

​ 代入公式得: [ x 1 d ˙ x 2 d ˙ ] = [ 0 1 − ( − 1 x 1 2 ) − 1 ] x 0 [ x 1 d x 2 d ] = [ 0 1 1 − 1 ] [ x 1 d x 2 d ] \left[\begin{matrix}\dot{x_{1d}}\\\dot{x_{2d}}\\\end{matrix}\right]=\left[\begin{matrix}0&1\\-\left(-\frac{1}{x_1^2}\right)&-1\\\end{matrix}\right]_{x_0}\left[\begin{matrix}x_{1d}\\x_{2d}\\\end{matrix}\right]=\left[\begin{matrix}0&1\\1&-1\\\end{matrix}\right]\left[\begin{matrix}x_{1d}\\x_{2d}\\\end{matrix}\right] [x1d˙x2d˙]=[0(x121)11]x0[x1dx2d]=[0111][x1dx2d]

​ 此时, x 2 d ˙ = x 1 d − x 2 d \dot{x_{2d}}=x_{1d}-x_{2d} x2d˙=x1dx2d

​ 又因为 x d ¨ = x 2 d ˙ \ddot{x_d}=\dot{x_{2d}} xd¨=x2d˙ x d = x 1 d x_d=x_{1d} xd=x1d x d ˙ = x 2 d \dot{x_d}=x_{2d} xd˙=x2d

​ 所以,可得 x d ¨ + x d ˙ − x d = 0 \ddot{x_d}+\dot{x_d}-x_d=0 xd¨+xd˙xd=0

完成线性化!

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
要使用雅可比矩阵线性化网络动力学方程,可以按照以下步骤进行: 1. 确定网络的动力学方程,表示节点之间的相互作用关系。例如,一个简单的动力学方程可能是: dx_i/dt = f(x_i) 其中,x_i 是节点 i 的状态变量,f(x_i) 是节点 i 的动力学函数。 2. 计算网络动力学方程的雅可比矩阵雅可比矩阵描述了动力学函数关于状态变量的偏导数,可以线性化非线性动力学方程。对于节点 i,雅可比矩阵的第 j 行第 k 列元素可以表示为: J_{ij} = ∂f_i/∂x_k 其中,f_i 是节点 i 的动力学函数,x_k 是状态变量的第 k 个分量。 3. 将网络动力学方程线性化为一组线性微分方程。根据线性化理论,可以将非线性动力学方程近似为一组线性微分方程: dδx_i/dt = J_i · δx 其中,δx_i 是节点 i 的扰动变量,J_i 是节点 i 的雅可比矩阵,δx 是整个系统的扰动向量。 4. 求解线性化微分方程,得到扰动变量随时间的演化。可以使用数值方法(如欧拉法、龙格-库塔法等)进行求解。 线性化网络动力学方程使得我们可以分析网络在扰动条件下的稳定性和响应。通过计算雅可比矩阵的特征值,我们可以获得系统的稳定性信息,例如 Lyapunov 指数。正值的特征值表示系统处于混沌状态,而负值的特征值表示系统处于稳定状态。 需要注意的是,线性化是一种近似方法,只在小扰动范围内有效。对于大幅度的扰动或高度非线性的系统,线性化方法可能不适用。此外,计算雅可比矩阵和求解线性化微分方程可能需要使用数值方法和计算工具,特别是对于大型复杂网络来说。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值