泰勒展开,函数线性化,雅可比矩阵

二郎就不设置什么VIP可见啥的了,这样大家都能看到。
如果觉得受益,可以给予一些打赏,也算对原创的一些鼓励,谢谢。

钱的用途:1)布施给他人;2)二郎会有更多空闲时间写教程

起因:

二郎经常做优化问题,包括了线性和非线性,线性的可以直接用最小二乘法完成求解,但是非线性问题就需要其他方法,要么转换的线性函数,要么用非线性方法求解。

转换成线性函数,不可避免需要用到泰勒展开,泰勒展开又不可避免会涉及求导以及雅可比矩阵,所以这些问题都逃不开,所以,下面二郎做了一些更好理解的内容,让大家看地舒心,用地开心。

1)什么是线性函数:

z = ax+ by
什么是非线性函数:
z =sin(ax) + cos(by)

直观得理解,因变量z,随着自变量x和y线性变化。
什么是线性变化?这里也别说别的,什么曲线啥的,这里就理解为一条直线就行。
那么我们会发现,我们大部分公式都是非线性的,这样我们就没办法使用最小二乘求解了,为什么呢?因为没办法列出用于最小二乘求解的公式。
在这里插入图片描述
从上面可以,常规最小二乘没办法直接求解参数。至于为什么β可以那么求解,可以看
https://blog.csdn.net/a6333230/article/details/120531262?spm=1001.2014.3001.5501

2)为什么泰勒展开可以线性化函数:

这里强调一遍,泰勒展开是针对函数上面的一个点的,并不是针对整个函数的。
所以我们这里可以不说成是线性化函数,而是说线性化函数上面的一个点,在一个点上,我们的泰勒展开函数和原函数一模一样。
在这里插入图片描述
我们不妨把泰勒函数求导,我们会发现一阶导,二阶导,以及多阶导,和原函数 f ( x ) f(x) f(x) x = a x=a x=a的位置求导,结果是一样的,也就是我们的泰勒展开式在 x = a x=a x=a的地方是和 f ( x ) f(x) f(x)完全相等的,就是一个函数,所以我们可以说,在 x = a x=a x=a时,泰勒展开把 f ( x ) f(x) f(x)线性化了。
这里大家会有一个疑惑,这里不是有二次项,多次项么,也不是线性函数呀。
线性化是特指把高阶项省略,只保留一阶泰勒展开
在这里插入图片描述
这里会有人有质疑,这种近似会造成多大误差,会不会得不到最优的结果。
我们可以回看泰勒展开,后面一项比一项小,我们先看一下二阶项的省略能引起多大误差
在这里插入图片描述
这里会有人问,为啥只考虑误差是由二阶项引起的,后面的呢?
在这里插入图片描述
官方给出的解释也是说,后面的更高阶的项影响更小,因此可以利用比截断处高一阶的项表示所有的误差。下面给一个例子,看一下误差有多大。
在这里插入图片描述

3)这里都是导数,为啥用到了雅可比矩阵:

在这里插入图片描述
上面用导数时,只是一个变量,在有多个变量,就涉及到了雅可比矩阵。
说白了,其实没有这个矩阵,只是把一堆数据用矩阵表示了,只是一种表示方法。
从行来看,是 f 1 f_1 f1对每一个变量的导数。类比,一个变量一个导数,多个变量多个导数
从列来看,有 f 1 f_1 f1 f 2 f_2 f2…… f m f_m fm,不就一个公式么,为啥这么多公式了???

这里,我们要有一个概念,多少未知数,就至少要有多少公式,才能完成求解。所以有这么多公式,这里我们也要认识到一个问题,我们以前都理解错误的问题。

不是公式形式变了,才是新公式
而是只要数据变了,就是新公式
数据变了,也是公式形式变了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值