常见的大模型定制策略(一)如何选择LLM?

大语言模型(LLM)是基于自监督学习预训练的深度学习模型,训练数据量庞大、训练时间长,并且包含大量的参数。LLM在过去两年中彻底改变了自然语言处理领域,展现了在理解和生成类人文本方面的卓越能力。

然而,这些通用模型的开箱即用性能并不总能满足特定的业务需求或领域要求。LLM单独使用时无法回答依赖于公司专有数据或封闭环境的问题,这使得它们在应用中显得相对通用。

由于从零开始训练一个LLM模型需要大量的训练数据和资源,这对于中小型团队来说基本不可行。因此,近年来开发了多种LLM定制策略,以便针对需要专业知识的不同场景调优模型。

定制策略大致可以分为两种类型:

  1. 使用冻结模型:这些技术不需要更新模型参数,通常通过上下文学习或提示工程来实现。由于它们通过改变模型的行为而不需要大量训练成本,因此具有成本效益,广泛应用于工业界和学术界,每天都有新的研究论文发表。

  2. 更新模型参数:这是一种相对资源密集的方法,需要使用为特定目的设计的自定义数据集来调优预训练的LLM。这包括如微调(Fine-Tuning)和基于人类反馈的强化学习(RLHF)这些流行的技术。

这两种定制范式进一步分化为各种专门的技术,包括LoRA微调、思维链(Chain of Thought)、检索增强生成(RAG)、ReAct和Agent框架等。每种技术在计算资源、实现复杂度和性能提升方面提供了不同的优势和权衡。

一、如何选择LLM?

定制LLM的第一步是选择合适的基础模型作为基准。例如Huggingface这些基于社区的平台,提供了由顶级公司或社区贡献的各种开源预训练模型,如Meta的Llama系列和Google的Gemini。Huggingface还提供了例如Open LLM Leaderboard这样的排行榜,可以根据行业标准的指标和任务(如MMLU)来比较LLM。

云服务提供商如AWS(亚马逊)和AI公司(如OpenAI和Anthropic)也提供访问专有模型的服务,这些通常是付费服务,且访问受限。

选择LLM时需要考虑以下几个因素:

  1. 开源模型还是专有模型:开源模型允许完全定制和自托管,但需要技术专业知识,而专有模型则提供即时访问,通常可以提供更好的响应质量,但成本较高。

  2. 任务和指标:不同的模型在不同任务上表现出色,包括问答、总结、代码生成等。通过比较基准指标并在特定领域任务上进行测试,来确定合适的模型。

  3. 架构:一般来说,仅解码器模型(如GPT系列)在文本生成方面表现更好,而编码-解码模型(如T5)在翻译任务上表现优秀。现在有更多的架构出现并展现出良好的结果,例如专家混合模型(MoE)DeepSeek。

  4. 参数数量和模型大小:较大的模型(70B-175B参数)通常提供更好的性能,但需要更多的计算资源。较小的模型(7B-13B)运行更快且更便宜,但可能在能力上有所减少。

在确定了基础LLM之后,让我们来看一下六种最常见的LLM定制策略,按资源消耗从最少到最多的顺序排列:

  1. 提示工程(Prompt Engineering)

  2. 解码与采样策略(Decoding and Sampling Strategy)

  3. 检索增强生成(Retrieval Augmented Generation)

  4. Agent

  5. 微调(Fine Tuning)

  6. 基于人类反馈的强化学习(Reinforcement Learning from Human Feedback)


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

### LLM3.2 语言大模型性能评估的方法与指标 #### 方法概述 对于LLM3.2这样的大型语言模型,其性能评估通常涉及多个方面。具体来说,可以从以下几个维度展开分析: 1. **评估方法的选择** 针对LLM3.2的语言模型特性,可以选择多种评测手段来全面衡量其性能。常见的方式是通过设计实验验证模型在不同任务上的表现,例如文本生成、翻译、问答等[^1]。此外,还可以采用无监督和有监督两种模式下的评测策略。无监督评测侧重于考察模型的泛化能力和上下文理解力;而有监督评测则更多关注模型在特定任务中的精确度。 2. **鲁棒性提升的方向** 在未来的评测体系改进中,开发更加稳健的评测标准是个重要的趋势。这意味着需要减少外部因素干扰(如输入噪声),从而让评测结果更为可靠。同时,探索能够适应复杂环境变化的新代评测工具也是当前研究的重点之[^2]。 3. **结合人类判断与自动化评分** 考虑到单依靠机器打分可能存在局限性,因此尝试融合人工评价意见成为优化方案之。这种方法不仅提高了最终结论的信任程度,同时也弥补了些传统量化指标难以捕捉细微差异之处。 #### 主要评估指标及其应用场景 以下是几种广泛应用于现代NLP领域内的核心评估指标: - **BLEU (Bilingual Evaluation Understudy)** BLEU是种用于测量机器翻译质量的经典指标,在对比候译文与参考译文之间匹配程度时非常有效。它特别适合用来检验短语级相似度。 - **ROUGE (Recall-Oriented Understudy for Gisting Evaluation)** ROUGE系列主要用于总结任务的效果评定上,通过对重叠n元组数量统计得出分数,反映摘要内容覆盖范围广度及准确性。 - **METEOR (Metric for Evaluation of Translation with Explicit ORdering)** METEOR综合考虑词形变换等因素计算得分,相较于其他同类工具有更强灵活性,尤其适用于多义项处理场合下。 - **Perplexity** 迷惑度(perplexity)作为衡量语言建模优劣的重要尺度,表示给定序列预测难度大小。数值越低表明模型对该分布掌握得越好。 除了上述通用型外,还有针对特殊需求定制化的专用版本可供用,比如专门面向对话系统的DSTC(Dialog State Tracking Challenges)相关参数集合等等[^4]。 ```python import numpy as np def calculate_perplexity(probabilities): """ 计算困惑度(Perplexity) 参数: probabilities (list): 各单词概率列表 返回值: float: 困惑度值 """ log_probs = [-np.log(p) for p in probabilities if p !=0 ] perplexity_value = np.exp(np.mean(log_probs)) return perplexity_value ``` --- #### 数据集支持 为了更好地完成以上各项检测操作,往往还需要借助高质量的数据资源辅助实施过程。目前已有不少公开可用的标准库被整理出来供开发者们取用,其中就包含了适配各类子领域的专项素材包。例如GitHub项目`LLM-evaluation-datasets`提供了详尽文档说明以及定期维护更新机制,极大地方便了研究人员快速定位目标材料并开展相应试验活动。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值