人工智能正变得越来越强大,而提示工程是开启 GPT-4 等大型语言模型潜力的关键。本指南专为你提供简单易懂的提示编写技巧,便于你与这些先进的人工智能系统进行高效沟通。
提示工程不仅仅是向人工智能下达命令,而是要学会如何以人工智能能够理解并做出最佳反应的方式提出问题。
掌握这项技能对于任何对人工智能感兴趣的人都至关重要。它可以将简单的问题转化为与人工智能之间有深度、有见地的对话。
在这个人工智能正在渗透到各个行业的时代,知道如何以正确的方式提出正确的问题,将会大有裨益。
现在,让我们一起来学习提示工程指南吧!
什么是提示工程?
那么,究竟什么是提示工程呢?可以把它理解为教你如何用人工智能的语言与其对话。大型语言模型,比如 GPT-4,虽然非常智能,但是它需要正确的问题才能给出最好的答案。
提示工程就是要精心设计这些问题。这就像给人工智能一张清晰的地图,让它知道你在寻找什么。你将学会如何使用正确的词语、设置你的问题,并为人工智能提供它所需要的信息,使其能够理解并以最有帮助的方式做出回应。
对于任何想要深入研究AI模型应用的人来说,这项技能都非常有用。无论你是在撰写文案、编程,还是数据分析或是其他任务,了解如何有效地向人工智能提问都可以帮助你获得深入的见解和令人满意的回复。
这项技能对于任何想要深入了解人工智能世界的人来说都非常有用。无论你是在撰写学术论文,还是在进行编码项目,或者只是为了好玩而探索人工智能,知道如何有效地向人工智能提问,都能帮助你获得令人惊叹的、富有洞察力的回答。
继续往下阅读,你将学习到提示工程的简单的技巧和窍门,帮助你与人工智能进行有效沟通,以便引导 ChatGPT 给出你想要的回复。
如何获得更好的结果?
1、编写清晰的指令
提示的清晰度和具体性会直接影响模型回答的质量。
在询问中包含细节
要问:“逐步解释植物光合作用的原理,包括阳光、水和二氧化碳的作用,以及葡萄糖和氧气的产生过程。”
不要问:“解释光合作用”。
要求模型扮演角色
要问:“作为市场营销专家,考虑到目标用户对产品功能和价格的关注,为他们设计一则有效的广告宣传语。”
不要问:“这个产品适合谁购买?”
使用分隔符对输入内容进行分隔
要问:“问题:[如何有效管理团队的时间?]。建议的解决方案:[使用日历和任务列表规划每周工作,设定明确的优先级]。预期效益:[提高工作效率,减少工作重叠和延迟]。”
不要问:“团队项目进度经常推迟,应该怎么办?”
明确完成任务的步骤
要问:“列出学习新语言的计划,从基本词汇开始,然后学习语法,最后与母语人士练习。”
不要问:"我如何学习一门新语言?
提供示例
要问:“请像你之前解析《红楼梦》那样,从爱情与权力的角度出发,分析《西游记》?”
不要问:“分析下《西游记》”。
指定所需的输出长度
要问:“请用500字概括《水浒传》中的主要情节,特别是突出几位主要人物的故事和他们之间的关系。”
不要问:“《水浒传》主要讲的是什么?”
2、提供参考文本
将模型引向具体的参考材料,可以大大提高其回答的准确性和相关性。
要问:“使用参考文本作答,根据本市场研究报告[插入文本]中的数据,确定 2024 年的三大消费趋势。”
不要问:"今年的消费趋势是什么?
根据参考文献回答
要问:“使用所提供的科学期刊文章[插入文本],引用有关 COVID-19 疫苗有效性的主要发现。”
不要问:"COVID-19 疫苗有效吗?
3、将复杂任务拆分成较简单的子任务
将复杂的问题分成更简单、更易于处理的小问题,可以大大提高模型的准确性和效率。
使用意图分类进行用户查询
这样做:“识别用户的查询是寻求信息、帮助还是意见,然后做出相应的回应”。
不要:“回复该用户的问题”。
对长篇幅文件进行分段式总结
这样做:“请逐章节提供《三国演义》的摘要,然后总结整部小说的主要内容。”
不要:“总结《三国演义》”。
递归构建完整摘要
这样做:“首先概括本技术文件的导言[提供正文],然后概括随后各节的内容,最后进行总体概括”。
不要:“请给我一份这篇技术论文的摘要。”
4、给模型 "思考 "的时间
在急于得出结论之前,先引导模型自己找出解决方案。
这样做:如果你提出的是一个复杂的问题,例如解决一个多步骤的数学问题,那么可以让模型将答案分解成更小的步骤。比如,“请通过展示你工作的每个步骤来解方程式 2x + 3 = 11”。
不要:对于推理过程至关重要的复杂问题,避免要求立即给出简短的答案。例如,2x + 3 = 11 的解是什么?"
使用自我思考或一系列问题来帮助模型进行推理过程
这样做:在解决问题时,建议模型进行思考。例如,“在计算半径为 5 的圆的面积时,首先要考虑圆的面积公式。你能用这种方法向我讲解一下你的思考过程吗?”
不要:不要直接跳过解题步骤或者用过于简单的方式回答复杂问题。例如,“给我一个半径为 5 的圆的面积”。
询问模型在之前的传递中是否遗漏了什么
做法:在收到答复后,尤其是对多方面问题的答复后,要求进行复查:“你能再检查一下问题的所有方面是否都涉及到了吗?你在回答时是否考虑了所有相关因素?”
不要:避免只接受复杂问题的第一个答案而不深入探究,尤其是在答案似乎不完整的情况下。例如,不要简单地追问:"这里还有什么需要考虑的吗?"或 "你是否涵盖了问题的所有要点?
5、系统性地测试更改
系统性测试可确保对提示进行的任何更改都能提高性能。
使用标准答案评估输出结果
这样做:“将本段从英语翻译成中文,然后将你的译文与专业翻译版本进行比较,找出差异。”
不要:“将本段从英语翻译成中文。” (没有提及与专业译文进行比较)
最后
通过以上这些技巧,结合正确的方法和避免常见的误区,你可以显著提升ChatGPT的回应效果和效率。
本指南不仅可以帮助你掌握提示工程技巧,还能够让你在与人工智能模型的对话中获得更加丰富、准确和深入的体验。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。