写在前面
第38届神经信息处理系统大会(NeurIPS 2024)于12月9日至15日在加拿大温哥华举行,今年的NeurIPS大会共收到了15671篇有效论文投稿,录取率为25.8%。本文介绍了NeurIPS 2024 中收录的几篇量化交易相关的论文。
论文标题:
CausalStock: Deep End-to-end Causal Discovery for News-driven Stock Movement Prediction
论文链接:
https://openreview.net/forum?id=5BXXoJh0Vr
研究内容:
现有的基于新闻驱动的多股票走势预测方法存在两个主要问题尚未得到有效解决。一方面,"关系发现"是利用其他股票价格信息进行准确预测的重要环节。由于股票关系通常是单向的(例如“供应商-消费者”关系),因果关系比简单的相关关系更适合捕捉股票之间的影响。另一方面,新闻数据中存在大量噪声,难以提取有效信息。为解决这些问题,这篇论文提出了一种名为CausalStock的新框架,用于基于新闻驱动的多股票走势预测。该框架通过时间滞后相关的因果发现机制,构建时间因果图分布;随后,使用功能因果模型(FCM)来封装所发现的因果关系并预测股票走势。此外,提出了一种去噪新闻编码器,利用大型语言模型(LLMs)的文本评估能力,从海量新闻数据中提取有用信息。实验结果表明,CausalStock在六个来自美国、中国、日本和英国市场的真实数据集上,均优于现有强基线模型,同时因果关系的引入使得CausalStock具有良好的解释能力。
模型框架
实验结果
论文标题:
ROIDICE: Offline Return on Investment Maximization for Efficient Decision Making
论文链接:
https://openreview.net/forum?id=6Kg26g1quR
研究内容:
本文提出了一种新颖的策略优化框架,用于在具有成本函数的马尔可夫决策过程(MDP)中使用固定数据集最大化策略的投资回报率(ROI)。ROI定义为策略收益与累计成本的比率,是评估策略效率的指标。尽管在诸多实际应用中最大化ROI至关重要,但由于其是长期收益与累计成本的比值这一特性,使得这一问题极具挑战性。为解决这一问题,本文将ROI最大化强化学习问题建模为线性分式规划问题,并结合基于静态分布校正(DICE)框架的实际算法,开发了一种离线ROI最大化算法——ROIDICE。实验表明,ROIDICE相比于基于现有框架训练的策略,能够提供收益和累计成本之间更优的平衡,从而实现更高效的策略。
论文标题:
FINCON: A Synthesized LLM Multi-Agent System with Conceptual Verbal Reinforcement for Enhanced Financial Decision Making
论文链接:
https://arxiv.org/abs/2407.06567
研究内容:
大语言模型(LLMs)在复杂的金融任务中展现出潜力,但由于金融环境的波动性以及对智能风险管理的需求,使得顺序性金融决策仍然具有挑战性。尽管基于LLM的代理系统已实现了显著的回报,但如何通过及时的经验改进来优化多源信息综合与决策过程仍未被充分探索。本文提出了FinCon,这是一种基于LLM的多代理框架,专为多样化金融任务设计,并引入了概念性语言强化机制。受现实投资公司结构的启发,FinCon采用了经理-分析师分层架构,通过自然语言交互实现跨职能代理的同步协作,其双层风险控制组件通过日常市场风险监控与自我反思更新系统性投资信念,从而增强决策能力。这些概念化的信念为未来决策提供语言强化,并选择性地传播至相关代理,提升性能同时降低不必要的通信成本。实验表明,FinCon在单一股票交易和投资组合管理等任务中表现出优越的适应性。
模型框架
模型框架
实验结果
论文标题:
A Globally Optimal Portfolio for m-Sparse Sharpe Ratio Maximization
论文链接:
https://arxiv.org/abs/2410.21100
研究内容:
夏普比率是金融工程中一种重要且广泛使用的风险调整收益指标。在现代投资组合管理中,为了降低管理和财务成本,通常需要一个m稀疏的投资组合(不超过m个活跃资产)。然而,由于m稀疏约束的非凸性和复杂性,现有方法很少能够优化具有m稀疏约束的夏普比率。文中提出将m稀疏分数优化问题转化为等价的m稀疏二次规划问题。结果目标函数的半代数性质使我们能够利用Kurdyka-Łojasiewicz(KL)性质,开发出一种高效的近端梯度算法(PGA),该算法在一定条件下可使投资组合实现全局最优的m稀疏夏普比率。作者还给出了PGA的收敛速度分析。据我们所知,这是首次提出能够在理论上保证达到全局最优m稀疏夏普比率的方法。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。