一、项目概述
FinRobot 是一款基于大语言模型(LLM)的开源 AI 代理(Agent)平台,专注于金融领域的数据分析、量化交易和投资研究。该平台由 AI4Finance 基金会主导开发,旨在提供灵活的 AI 代理架构,结合金融链式思维(Financial Chain-of-Thought, CoT)提升数据解析能力,实现市场预测、财报分析和交易策略优化。
二、FinRobot 的架构设计
1. FinRobot 生态系统
FinRobot 采用四层架构,每一层针对金融 AI 任务进行了优化。
-
金融 AI 代理层:包含市场预测代理、文档分析代理、交易策略代理等,支持金融链式思维(CoT)提示。
-
金融 LLM 算法层:支持金融领域特定的 LLM 调优,提升金融分析的专业性。
-
LLMOps & DataOps 层:提供多源数据整合,并支持多种 LLM 模型的动态适配。
-
多源 LLM 基础模型层:支持 Plug-and-Play 式的 LLM 模型调用,灵活适配不同任务。
2. AI 代理工作流程
FinRobot 代理的工作流程包含三个核心部分:
-
感知(Perception):获取市场数据、新闻、经济指标,进行多模态解析。
-
思考(Brain):使用 LLM 结合金融链式思维方法,生成交易决策。
-
行动(Action):执行交易、调整投资组合、生成报告或发送预警。
3. 智能调度系统
FinRobot 采用 Smart Scheduler 调度系统,确保任务能够分配给最合适的 AI 代理。
-
Director Agent:根据任务特性分配代理。
-
Agent Registration:管理代理注册,跟踪其状态。
-
Agent Adaptor:调整代理功能,提高任务适配性。
-
Task Manager:存储和管理 AI 代理的任务执行情况。
三、安装与使用
1. 安装步骤
(1)创建 Python 环境
conda create --name finrobot python=3.10``conda activate finrobot
(2)克隆代码库
git clone https://github.com/AI4Finance-Foundation/FinRobot.git``cd FinRobot
(3)安装依赖
pip install -U finrobot # 或者从源码安装``pip install -e .
(4)配置 API Key
# 修改 OAI_CONFIG_LIST_sample 文件``mv OAI_CONFIG_LIST_sample OAI_CONFIG_LIST``vi OAI_CONFIG_LIST # 添加 OpenAI API Key`` ``# 修改 config_api_keys_sample 文件``mv config_api_keys_sample config_api_keys``vi config_api_keys # 添加 Finnhub、SEC-API、FinancialModelingPrep API Key
2. 示例应用
(1)市场预测代理:预测股票价格变动
import autogen``from finrobot.utils import get_current_date, register_keys_from_json``from finrobot.agents.workflow import SingleAssistant`` ``# 读取 OpenAI API 配置``llm_config = {` `"config_list": autogen.config_list_from_json("../OAI_CONFIG_LIST"),` `"timeout": 120,` `"temperature": 0,``}``register_keys_from_json("../config_api_keys")`` ``# 运行预测``company = "NVDA"``assistant = SingleAssistant("Market_Analyst", llm_config, human_input_mode="NEVER")``assistant.chat(f"分析 {company} 近期市场动态,并预测未来一周股价走势。")
(2)金融分析代理:自动生成财务报告
import os``import autogen``from finrobot.utils import register_keys_from_json``from finrobot.agents.workflow import SingleAssistantShadow`` ``llm_config = {` `"config_list": autogen.config_list_from_json("../OAI_CONFIG_LIST"),` `"timeout": 120,` `"temperature": 0.5,``}``register_keys_from_json("../config_api_keys")``work_dir = "../report"``os.makedirs(work_dir, exist_ok=True)`` ``assistant = SingleAssistantShadow("Expert_Investor", llm_config, human_input_mode="TERMINATE")``company = "Microsoft"``fyear = "2023"``message = f"请基于 {company} {fyear} 年的财务数据撰写年度分析报告,并导出 PDF。"``assistant.chat(message, use_cache=True, max_turns=50, summary_method="last_msg")
金融持仓分析(Financial CoT):
- 收集初步数据:10-K 报告、市场数据、财务比率
- 分析财务报表:资产负债表、利润表、现金流量表
- 公司概述与业绩:公司描述、业务亮点、分部分析
- 风险评估:评估风险
- 财务业绩可视化:绘制市盈率(PE ratio)和每股收益(EPS)图表
- 综合研究结果形成段落:将所有部分整合为连贯的总结
- 生成 PDF 报告:使用工具自动生成 PDF 文件
- 质量保证:检查字数
四、总结与展望
FinRobot 通过 AI 代理的方式,结合大语言模型,极大提升了金融市场的分析与交易能力。它不仅提供了强大的市场预测、财报分析和交易策略优化功能,还通过模块化架构,实现了灵活的 AI 代理管理。
作为一款开源项目,FinRobot 仍在不断迭代优化。未来,它将进一步增强对多模态数据的支持,优化 LLM 任务调度,提升交易策略智能化水平。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。