港大开源了博士级全自动AI科研助手:利用 LLM Agent实现全自动科研

香港大学数据科学团队近日宣布了他们的 Google AI Co-Scientist 的开源替代品 AI-Researcher:一款利用 LLM Agent 实现的全自动科研助手系统。

这个全自动系统彻底消除了研究全过程中的人工干预,实现了科学发现的无缝自动化,覆盖每个关键阶段:
📚 文献综述 & 创意生成
🧪 算法设计 & 实现
💻 算法验证 & 优化
📊 结果分析
✍️ 论文撰写

AI-Researcher 为科学家提供:
🎯 *完全自主*:端到端的研究自动化
🔄 *无缝协作*:集成所有研究阶段的工作流
🧠 *先进 AI 驱动*:基于最前沿的 LLM Agent
🚀 *科研加速*:提升科学创新效率

img

*AI-Researcher 支持两种不同层次的用户输入查询*

Level 1:详细创意描述

在此层级,用户提供具体的研究想法描述,系统根据这些详细输入制定实施策略,并严格按照用户需求进行研究开发。

Level 2:基于参考文献的创意生成

这一层级更为简化,用户可以提交相关的参考论文,而无需提供具体的研究想法。例如,用户可能会输入:
“我有一些参考论文,请基于这些文献生成一个创新研究思路,并实现相关研究。”
系统将自动分析提供的文献,并基于其内容生成和发展新的研究概念。

🌟 核心能力 & 集成

AI-Researcher 通过关键组件的无缝整合,构建了一个完整的科研生态系统

🚀 核心研究功能

  • 📚 文献综述:对现有研究进行全面分析与综合归纳
  • 📊 创意生成:系统性地收集、组织并提出新的研究方向
  • 🧪 算法设计与实现:开发方法论,并将研究思路转化为可执行的实现方案
  • 💻 算法验证与优化:自动化测试、性能评估和迭代优化
  • 📈 结果分析:提供高级实验数据解析与洞察
  • ✍️ 论文撰写:自动生成高质量、完整的学术论文

AI-Researcher 的工作原理

🔄 端到端科学研究自动化系统

AI-Researcher 通过集成式流水线,实现完整科研生命周期的全面自动化。系统将研究活动划分为三个核心阶段

1. 📚💡 文献综述 & 创意生成

🔍 资源收集器:系统化地从多个科学领域收集全面的研究资料,自动检索主要学术数据库(如 arXiv、IEEE Xplore、ACM Digital Library、Google Scholar)、代码平台(如 GitHub、Hugging Face)以及各类开放数据集

🧠 资源筛选器:通过质量指标(如引用次数、代码维护情况、数据完整性)和相关性评估,筛选高影响力论文、优质代码实现以及基准数据集。

💭 创意生成器:基于筛选出的高质量研究资源(包括论文和代码库),自动分析当前方法的局限性,绘制技术发展趋势,并探索新的研究方向,形成创新性研究思路。

2. 🧪💻 新算法设计、实现与验证

设计 → 实现 → 验证 → 优化

📝 设计阶段:在此阶段,系统围绕算法构思进行概念开发,并建立理论基础。同时,制定实施策略,确保方案不仅超越现有方法,还具有实际可行性。

⚙️ 实现阶段:将抽象概念转化为具体代码,开发功能模块,建立 测试环境,构建实验验证所需的基础设施。

🔬 验证阶段:系统化实验是验证过程的核心,包括算法性能评估、指标收集、实验结果记录,确保算法符合实际需求。

🔧 优化阶段:根据验证结果,进入迭代优化,识别需要改进的部分,优化代码效率,提升性能,并规划下一步开发方向。

3. ✍️📝 论文撰写

📄 Writer Agent(论文写作Agent):自动生成完整的学术论文,整合研究想法、研究动机、新设计的算法框架、算法验证结果,采用层次化写作方法,生成精准且清晰的高质量论文。

🚀 全自动化系统,消除人工干预,助力科研人员高效完成从构思到发表的整个研究过程,成为理想的科研助手

🔬 全面的基准评测体系

港大还开发了一套全面且标准化的评估框架,用于客观评估 AI 科研助手的学术能力及其研究质量。

1. 👨‍🔬 *专家级基准*

基准测试使用人类专家撰写的论文作为参考标准,确保高质量对比与验证。

2. 🌈 *多学科覆盖*

基准测试涵盖 四大核心研究领域,确保广泛适用性:

  • 计算机视觉(CV)
  • 自然语言处理(NLP)
  • 数据挖掘(DM)
  • 信息检索(IR)

3. 🌐 *完全开源的基准构建*

完整开源数据处理流程,包括数据集、数据收集流水线、数据处理代码,确保评测透明,同时支持社区定制,可针对不同研究领域扩展评测标准。

4. 📊 *全面评测指标*

评估框架采用层次化、系统化评估,使用 Evaluator Agent 进行多维度考察:

  • 创新性(Novelty):研究工作的创新性和独特性
  • 实验完整度(Experimental Comprehensiveness):实验设计、执行和严谨性
  • 理论基础(Theoretical Foundation):理论背景的稳健性和深度
  • 结果分析(Result Analysis):实验结果的准确性和解释的深入程度
  • 写作质量(Writing Quality):论文的清晰度、逻辑性和结构

🚀 推动科研自动化进步:该基准测试框架不断演进,持续整合新技术,拓展适用范围,以满足科研社区的不断增长的需求。

🌟 易用的 AI 研究助手

AI-Researcher 提供真正无缝、易用的科研自动化体验,消除技术壁垒,帮助用户专注于创新。

🌐 多LLM支持
兼容多家LLM供应商,如 Claude、OpenAI、DeepSeek 等,用户可自由选择最适合的 AI 能力。

📚 轻松开启研究
无需上传文件或提供复杂初始设定,只需提供一份相关论文列表,AI-Researcher 即可自动完成后续研究,极大简化科研流程。

🧠 低门槛使用
AI-Researcher 自动识别研究空白、提出创新方案,并执行整个研究流程,即使缺乏专业领域知识,用户仍可轻松产出高质量研究成果

📦 开箱即用
AI-Researcher 无需复杂配置,可直接使用,立即体验先进的研究自动化功能,助力科研人员高效推进研究进程

开始使用 AI-Researcher

官方提供了两种安装方式:

\1. 源码安装:

git clone https://github.com/HKUDS/AI-Researcher.gitcd AI-Researcherpip install -e .

\2. 通过 Docker 安装:

docker pull tjbtech1/paperagent:latest

根据提供的 .env.template 文件创建环境变量文件。在此文件中,设置你要使用的 LLM 的 API Key。

OPENAI_API_KEY=DEEPSEEK_API_KEY=ANTHROPIC_API_KEY=GEMINI_API_KEY=HUGGINGFACE_API_KEY=GROQ_API_KEY=XAI_API_KEY=

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值