今天,智谱在中关村论坛上正式发布**「AutoGLM沉思」,这一全新智能体不仅具备深度研究能力(Deep Research),还能实现实际操作(Operator)**,真正推动AI Agent进入「边想边干」的阶段。
「AutoGLM沉思」的技术演进路径包括:GLM-4基座模型 → GLM-Z1推理模型 → GLM-Z1**-Rumination沉思模型 → AutoGLM模型。**其中核心链路的模型和技术,**我们将于4月14日正式开源,**以推动行业生态发展。
「让机器像人一样思考」,智谱始终专注于AGI的基座模型研发,目前已经探索到L3-Agentic LLM阶段。在行业生态方面,智谱坚持和行业伙伴共创,用其在大模型研发上的积累帮助行业伙伴成功,合力做出成功的大模型应用。智谱也积极推动中国原创大模型及解决方案出海,帮助「一带一路」国家构建自主、可控、无幻觉的国家级/区域级自主大模型。
AutoGLM沉思
在AI Agent的发展过程中,智谱始终在不断探索和创新。从最早推出具备Function Call能力的智谱清言(2023.10),到率先上线支持智能体编排的GLMs(2024.1),再到推出全球首个设备操控智能体AutoGLM(2024.10),智谱一直引领AI Agent 上界的探索。
今天,智谱推出全新的「AutoGLM沉思」模型,全球首个集深度研究与实际操作能力于一体的Agent。这是自主智能体技术的一次重要进步,也是设备操控智能体的进一步升级。
GLM大模型
,赞277
「AutoGLM沉思」体现了智谱对AI Agent的核心理解:让机器不仅能够思考,还能主动行动,实现「边想边干」的目标。
这一能力的实现依赖于三个关键特性:
- 深度思考:能够模拟人类在面对复杂问题时的推理与决策过程。
- 感知世界:能够像人一样获取并理解环境信息。
- 工具使用:能够像人一样调用和操作工具,完成复杂任务。
「AutoGLM沉思」融合了以上三大能力。与OpenAI 的 Deep Research不同,它不仅能深入研究,还能真正执行任务,推动AI Agent从单纯的思考者,进化为能交付结果的智能执行者。
*官网:https://autoglm-research.zhipuai.cn/?channel=autoglm_android*
目前,AutoGLM沉思在智谱清言PC客户端上线,用户可免费体验其研究能力和操作能力。此次发布的为 preview版本,核心支持 research 场景;在未来两周,我们将进一步扩展更多智能体执行能力。包括推出「虚拟机」版本,进一步增强AI Agent的实际落地能力。
沉思功能,目前已经正式上线智谱清言网页端、PC端和手机 App,免费、不限量地开放给大家。这也是国内首个正式开放的Deep Research功能。
GLM系列模型
「AutoGLM沉思」模型的背后,是智谱自主研发的全栈大模型技术,融合了GLM-4的通用能力、GLM-Z1的反思能力、GLM-Z1-Rumination的沉思能力,以及AutoGLM的自动执行能力。
1、新版基座模型
基于最新的技术积累,我们重新训练了一个320亿参数的基座模型 GLM-4**-Air****-0414,在预训练阶段加入了更多的代码类、推理类数据,并在对齐阶段针对智能体能力进行了优化,模型在工具调用、联网搜索****、代码等智能体任务上的能力得到大大加强****。**
GLM-4-Air-0414 以 32B 参数量比肩更大参数量的国内外主流模型,这使得模型在适配智能体任务方面特别有效。这是因为智能体任务往往涉及多轮复杂交互,32B的参数量使得 GLM-4-Air-0414 能快速执行复杂任务,为AI智能体的真正大规模落地应用提供了坚实基础。
2、新版推理模型
基于 GLM-4-Air-0414,智谱引入了更多推理类数据,并在对齐阶段深度优化了通用能力,推出了全新的深度思考模型 GLM-Z1-Air。
在**性能表现上,可以与DeepSeek-R1(671B,激活37B)媲美。**我们在 AIME 24/25、LiveCodeBench、GPQA 等基准测试中对 GLM-Z1-Air 进行了评估,评估结果显示 GLM-Z1-Air 展现了较为强大的数理推理能力,为更多复杂任务的解决提供了支持:
在推理速度上,GLM-Z1-Air相比 R1 提升了8倍,成本可以降低至1/30,实现高性能与高性价比的双重突破。
此外,GLM-Z1-Air可在消费级显卡上运行。为了更进一步解放开发者在硬件方面的限制。
此外,我们也在MAAS平台上将免费模型 GLM-4-Flash 的基座版本更新至 GLM-4-Flash-0414,并推出了对应的推理版本 GLM-Z1-Flash,在保留大部分效果的情况下更轻量级、更高速,完全免费调用,以适用于更广泛的应用场景。
3、沉思模型
基于GLM-Z1,我们通过扩展强化学习训练,提升了模型结合工具使用完成长程推理能力,训练出沉思模型GLM-Z1-Rumination。
该模型突破了传统AI单纯依赖内部知识推理的局限,创新性地结合实时联网搜索、动态工具调用、深度分析和自我验证,形成完整的自主研究流程:
- 实时搜索:主动获取最新信息,突破信息孤岛。
- 深度分析:进行多角度逻辑推理,避免单一思维路径。
- 动态验证:不断修正假设,提高研究的准确性与逻辑性。
GLM-Z1-Rumination 能够主动理解用户需求,在复杂任务中不断优化推理、反复验证与修正假设,使研究成果更具可靠性与实用性。相比于传统的推理模型,我们期待沉思模型引领AI助手进入一个「高智商」到「高智商+高自主」的阶段,能够自主完成更复杂、更深入的研究任务。
4、AutoGLM
智谱的AutoGLM系列再次取得重要进展。
在GUI智能体领域,智谱自研模型GLM-PC(CogAgent)在多个权威评测榜单上取得SOTA 成绩。凭借仅9B的参数,CogAgent超越了包括GPT-4o + UGround、Claude Computer Use等更大规模的同类模型或商用API。
与此同时,在斯坦福大模型中心《AI指数2024》选定的智能体基准评测AgentBench上,AutoGLM系列模型在5个测试环境中也取得了 SOTA的成绩。其中,在Phone Use基准(AndroidLab & AndroidWorld)中,AutoGLM-Phone的任务成功率较此前最佳成绩提升超过20%;在Browser Use基准上,AutoGLM-Web也全面超越OpenAI GPT-4o和Anthropic Claude-3.5-Sonnet,展现了在网页交互场景中的领先能力。
上述模型将于4月14日开源,并将在未来两周内陆续上线MaaS平台(bigmodel.cn)。
合作****与成功
2025年无疑是AI Agent的爆发之年,智谱将战略聚焦Agentic GLM的研发,以推动智能体技术的快速发展。
在技术方面,智谱将依托原创自主大模型技术,持续推动具备逻辑推理和深度思考能力的Agent基座模型与通用基座模型的研发,再到智能体框架与Agent应用,朝着让机器像人一样思考和行动的目标不断前进。
智谱还将搭建Agentic LLM平台,助力生态合作伙伴利用智谱模型与智能体的强大能力,构建行业、地域与场景深度融合的智能体应用。
在行业生态方面,智谱将作为模型厂商,始终致力于帮助应用合作伙伴在GLM模型上实现成功的大模型应用。目前,我们已携手金融、教育、医疗、政务、企服等领域的合作伙伴,共同推进Agentic LLM的落地应用。
与此同时,智谱也相继与北京、杭州、上海、成都、珠海等城市达成合作,与当地龙头企业携手推动当地大模型应用生态的建设。
作为一家朝向 AGI 的公司,智谱不仅致力于推动国产大模型技术的发展,也希望能为世界贡献中国AI力量。我们在积极推动中国原创大模型及解决方案出海,帮助「一带一路」国家构建自主、可控、无幻觉的国家级/区域级的自主大模型。**由智谱主导,来自东盟十国及「一带一路」沿线的10个国家共同发起了「自主大模型国际共建联盟」正式成立,**帮助「一带一路」国家建立自主AI,构建可控的国家级AI基础设施。
AI的下一个应用范式正在加速形成,智谱将全力投入,推动这一变革的落地与发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。