一、了解AIGC
AIGC(Artificial Intelligence Generated Content)是人工智能生成内容智能社区,致力于推动人工智能技术的发展和应用。AIGC为企业提供了一系列商业落地应用的解决方案,帮助企业实现数字化转型,提高生产效率和盈利能力。
二、确定应用场景
在开始使用AIGC的商业落地应用之前,企业需要明确自己的应用场景。这可以包括以下几个方面:
-
业务流程优化:通过人工智能技术优化企业的生产、销售、客户服务等业务流程,提高效率和降低成本。
-
数据分析与决策支持:利用人工智能技术对企业的海量数据进行分析,为企业决策提供有力支持。
-
产品创新:结合人工智能技术,开发具有竞争力的新产品和服务。
-
客户体验提升:通过人工智能技术提升客户体验,提高客户满意度和忠诚度。
-
风险管理:利用人工智能技术对企业经营风险进行预测和控制,降低潜在损失。
三、选择合适的解决方案
根据企业的应用场景,AIGC提供了多种商业落地应用解决方案,包括:
-
智能客服:通过自然语言处理技术,实现与客户的智能对话,提高客户服务质量和效率。
-
智能推荐:利用机器学习算法,为客户提供个性化的产品推荐,提高转化率。
-
智能营销:通过大数据分析,实现精准营销,提高营销效果和投资回报率。
-
智能生产:利用人工智能技术优化生产流程,提高生产效率和产品质量。
-
智能供应链:通过人工智能技术优化供应链管理,降低库存成本和物流成本。
四、ChatGPT的商业化落地分析
1. 客户服务领域
在客户服务领域,ChatGPT可以作为一个认知智能模型,为客户提供24小时不间断的在线咨询服务。通过与ChatGPT的交互,客户可以快速获取所需的信息,解决遇到的问题,提高客户满意度。此外,ChatGPT还可以根据客户的需求和行为数据,为客户提供个性化的服务建议,提高客户忠诚度。
2. 教育领域
在教育领域,ChatGPT可以作为一个智能辅导老师,为学生提供个性化的学习建议和答疑解惑。通过对学生的学习数据进行分析,ChatGPT可以为学生推荐合适的学习资源,制定个性化的学习计划,帮助学生提高学习效果。此外,ChatGPT还可以协助教师进行课堂管理,减轻教师的工作负担。
3. 内容创作领域
在内容创作领域,ChatGPT可以作为一个智能写作助手,为用户提供高质量的文本生成服务。无论是撰写新闻报道、编写广告文案,还是创作小说故事,ChatGPT都可以根据用户的需求生成相应的文本内容。这将大大提高内容创作的效率,降低内容创作的成本。
4. 营销领域
在营销领域,ChatGPT可以作为一个智能营销顾问,为企业提供个性化的营销策略建议。通过对市场数据和用户行为数据的分析,ChatGPT可以帮助企业找到目标客户群体,制定有效的营销策略,提高营销效果。此外,ChatGPT还可以作为一个智能客服,为企业处理客户咨询和投诉,提高客户满意度。
5. 人力资源领域
在人力资源领域,ChatGPT可以作为一个智能招聘顾问,为企业提供个性化的招聘建议。通过对职位描述和求职者简历的分析,ChatGPT可以帮助企业筛选出合适的候选人,提高招聘效率。此外,ChatGPT还可以作为一个智能培训顾问,为企业提供个性化的培训方案,提高员工的工作能力。
五、ChatGPT商业化落地的挑战
尽管ChatGPT在各个领域具有广泛的应用前景,但在商业化落地过程中仍然面临着一些挑战:
-
技术挑战:虽然ChatGPT在自然语言处理方面表现出色,但在某些特定场景下,如多轮对话、情感识别等方面仍然存在一定的局限性。因此,如何进一步提高ChatGPT的技术性能,以满足不同场景的需求,是商业化落地过程中需要解决的一个重要问题。
-
数据安全与隐私保护:在商业化落地过程中,如何确保用户数据的安全与隐私成为一个亟待解决的问题。企业需要在保证服务质量的同时,采取有效措施保护用户数据的安全与隐私。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。