如何利用框架,使用大模型评估RAG效果(附文档代码)

导读

目前RAG是很多AI落地场景的解决方案, 但所谓没有评估就没有优化。本文介绍几种常用的RAG评估框架。阅读本文你将学到:

  1. 如何使用大模型评估大模型

  2. 如何使用这些框架

  3. 框架文档和代码

LlamaIndex 是用于大型语言模型(LLM)应用的开发框架。

它被开发人员广泛使用,用于创建检索增强生成(RAG)应用程序。

在 RAG 应用程序的开发过程中,评估相关数据对于更好地调整和优化应用程序至关重要。

随着 RAG 技术的进步,出现了更有效的评估工具,以促进对 RAG 应用程序的准确和高效评估。

在本文中,我们将介绍一些可以与 LlamaIndex 集成的 RAG 评估工具,并对它们进行比较。

RAG 评估工具是什么?

RAG 评估工具是用于测试和评估基于检索的文本生成系统的方法或框架。

它们评估准确性、内容质量和相关性等指标。

有助于开发人员了解并优化 RAG 应用程序以实现真实世界的使用。与手动评估相比,RAG 评估工具更客观、准确和高效,通过自动化实现大规模评估。

一些应用甚至将这些工具集成到 CI/CD 过程中,以实现自动化评估和优化。

实体术语

RAG 应用通常使用特定术语进行评估。这些术语在不同的评估工具之间可能会有所不同。以下是常见的实体定义:

  • 问题:指用户的查询。在一些工具中,它也被称为 输入 或 查询。

  • 上下文:指检索到的文档上下文。一些工具称之为 检索上下文。

  • 答案:指生成的答案。可能会使用不同的术语,如 实际输出 或 响应。

  • 标准答案:指手动标记的正确答案。用于评估生成答案的准确性。

我们将在接下来的工具描述中一贯使用这些术语,以保持清晰并便于比较。

准备工作

测试文档

我们使用漫威电影“复仇者联盟”作为测试文档。这些数据主要来自维基百科关于复仇者联盟的条目,包含了四部复仇者联盟电影的情节信息。

数据集

基于测试文档,我们创建了一个包含“问题”和“真相”的数据集。以下是定义的数据集:

`questions = [              ``     "洛基在征服地球的尝试中使用了什么神秘的物体?",               ``     "复仇者联盟的哪两名成员创造了奥创?",               ``     "灭霸如何实现了他在宇宙中消灭一半生命的计划?",               ``     "复仇者联盟用什么方法扭转了灭霸的行动?",               ``"复仇者联盟的哪位成员牺牲了自己来打败灭霸?",`              `]`              `   ``   ``   ``ground_truth = [              ``     "六角宝",               ``     "托尼·斯塔克(钢铁侠)和布鲁斯·班纳(绿巨人浩克)。",               ``     "通过使用六颗无限宝石",               ``     "通过时间旅行收集宝石。",               ``"托尼·斯塔克(钢铁侠)",`              `]`  

检索引擎

接下来,我们将使用LlamaIndex创建一个标准的RAG检索引擎。评估工具将使用此引擎生成Answer和Context:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader`              `   ``   ``   ``documents = SimpleDirectoryReader("./data").load_data()`              `vector_index = VectorStoreIndex.from_documents(documents)`              `query_engine = vector_index.as_query_engine(similarity_top_k=2)
  • 我们从data目录加载文档。

  • 使用VectorStoreIndex创建文档向量索引。

  • 将文档向量索引转换为查询引擎,并将相似度阈值设置为2。

TruLens

TruLens 是一个旨在评估和改进LLM应用程序的软件工具。

评估指标

TruLens 主要使用以下指标来评估 RAG 应用程序:

  1. 答案相关性:评估答案对问题的回应情况,确保其有帮助和相关性。

  2. 上下文相关性:评估上下文对问题的相关性,为LLM答案提供基础。

  3. 基于事实:检查答案是否与上下文中呈现的事实相一致。

  4. 基准真相:将答案与手动标记的基准真相进行比较,以确保准确性。

使用示例

以下是一个代码片段,演示如何使用 TruLens 进行 RAG 评估:

`import numpy as np`              `from trulens_eval import Tru, Feedback, TruLlama`              `from trulens_eval.feedback.provider.openai import OpenAI`              `from trulens_eval.feedback import Groundedness, GroundTruthAgreement`              `   ``   ``   ``openai = OpenAI()`              `golden_set = [{"query": q, "response": r} for q, r inzip(questions, ground_truth)]`              `ground_truth = Feedback(              ``GroundTruthAgreement(golden_set).agreement_measure, name="Ground Truth"`              `).on_input_output()`              `grounded = Groundedness(groundedness_provider=openai)`              `groundedness = (              ``     Feedback(grounded.groundedness_measure_with_cot_reasons, name="Groundedness")               ``     .on(TruLlama.select_source_nodes().node.text)               ``     .on_output()               ``.aggregate(grounded.grounded_statements_aggregator)`              `)`              `qa_relevance = Feedback(              ``openai.relevance_with_cot_reasons, name="Answer Relevance"`              `).on_input_output()`              `qs_relevance = (              ``     Feedback(openai.qs_relevance_with_cot_reasons, name="Context Relevance")               ``     .on_input()               ``     .on(TruLlama.select_source_nodes().node.text)               ``.aggregate(np.mean)`              `)`              `tru_query_engine_recorder = TruLlama(              ``     query_engine,               ``     app_id="Avengers_App",               ``     feedbacks=[               ``         ground_truth,               ``         groundedness,               ``         qa_relevance,               ``         qs_relevance,               ``],`              `)`              `with tru_query_engine_recorder as recording:              ``     for question in questions:               ``query_engine.query(question)`              `tru = Tru()`              `tru.run_dashboard()`    

这段代码片段使用 TruLens 来评估 RAG 应用程序。它定义了诸如 Ground Truth、Groundedness、Answer Relevance 和 Context Relevance 等反馈指标。然后使用 TruLlama 记录查询引擎的结果,并使用 Tru 运行评估以显示结果。

评估结果

TruLens的评估结果可以通过浏览器访问本地服务来查看。评估结果包括总体得分和详细指标。得分背后的原因也是可见的。以下是TruLens评估结果的示例:

Ragas

Ragas 是另一个用于评估RAG应用程序的框架。与TruLens相比,Ragas提供了更详细的指标。

评估指标

Ragas 使用以下指标来评估 RAG 应用程序:

  • 忠实度:评估“问题”和“上下文”之间的一致性。

  • 答案相关性:评估“答案”和“问题”之间的一致性。

  • 上下文精度:检查“基准真相”在“上下文”中是否排名较高。

  • 上下文召回:评估“基准真相”和“上下文”之间的一致性。

  • 上下文实体召回:评估“基准真相”中的实体与“上下文”之间的一致性。

  • 上下文相关性:评估“问题”和“上下文”之间的一致性。

  • 答案语义相似性:评估“答案”和“基准真相”之间的语义相似性。

  • 答案正确性:评估“答案”相对于“基准真相”的正确性。

  • 方面评论:包括对其他方面的评估,如有害性、正确性等。

使用示例

官方 Ragas 文档提供了与 LlamaIndex 集成的示例,但代码已过时。以下是更新后的示例:

from ragas.metrics import (              ``     faithfulness,               ``     answer_relevancy,               ``     context_relevancy,               ``answer_correctness,`              `)`              `from ragas import evaluate`              `from datasets import Dataset`              `   ``   ``   ``metrics = [              ``     faithfulness,               ``     answer_relevancy,               ``     context_relevancy,               ``answer_correctness,`              `]`              `answers = []`              `contexts = []`              `for q in questions:              ``     response = query_engine.query(q)               ``     answers.append(response.response)               ``contexts.append([sn.get_content() for sn in response.source_nodes])`              `data = {              ``     "question": questions,               ``     "contexts": contexts,               ``     "answer": answers,               ``"ground_truth": ground_truth,`              `}`              `dataset = Dataset.from_dict(data)`              `result = evaluate(dataset, metrics)`              `result.to_pandas().to_csv("output/ragas-evaluate.csv", sep=",")

在这个示例中

  • 使用 questions 和 ground_truth 作为输入数据。

  • 使用类似于 TruLens 中使用的指标。

  • 手动构建数据集,添加问题、答案和上下文。

  • 将评估结果保存到本地文件。

评估结果

Ragas的评估结果可以在本地文件中查看。结果包含每个评估指标的分数。以下是Ragas评估结果的示例:

Ragas和TruLens的评估结果显示出相当大的差异,特别是在上下文相关性指标上,得分明显较低。

事实上,在评估上下文时,Ragas建议将上下文精度和上下文召回作为主要指标。然而,为了与TruLens进行比较,我们使用了上下文相关性。

在Ragas的评估结果中,我们只看到分数,没有任何解释分数背后的原因。

DeepEval

DeepEval 是一个开源的LLM评估框架,允许像单元测试一样运行评估任务。

在这里插入图片描述

评估指标

DeepEval 使用以下评估指标,其中一些设计用于 RAG 应用程序,另一些用于其他 LLM 使用:

  • 忠实度:评估问题和上下文之间的一致性。

  • 答案相关性:评估答案和问题之间的一致性。

  • 上下文精确性:检查真相在上下文中的排名是否较高。

  • 上下文召回:评估真相和上下文之间的一致性。

  • 上下文相关性:评估问题和上下文之间的一致性。

  • 幻觉:衡量幻觉程度。

  • 偏见:评估偏见水平。

  • 毒性:衡量毒性的存在,包括人身攻击、讽刺或威胁。

  • Ragas:允许使用 Ragas 进行评估和生成解释。

  • 知识保留:评估信息的持久性。

  • 摘要:评估摘要的有效性。

  • G-Eval:G-Eval 是使用大型语言模型(LLM)和思维链(CoT)执行评估任务的框架。它可以根据任何自定义标准评估 LLM 输出。有关更多信息,请查阅此论文。

用法示例

DeepEval 可以运行像单元测试这样的评估任务。这里有一个简单的例子:

`import pytest`              `from deepeval.metrics import (              ``     AnswerRelevancyMetric,               ``     FaithfulnessMetric,               ``ContextualRelevancyMetric,`              `)`              `from deepeval.test_case import LLMTestCase`              `from deepeval import assert_test`              `from deepeval.dataset import EvaluationDataset`              `   ``   ``   ``def generate_dataset():              ``     test_cases = []               ``     for i inrange(len(questions)):               ``         response = query_engine.query(questions[i])               ``         test_case = LLMTestCase(               ``             input=questions[i],               ``             actual_output=response.response,               ``             retrieval_context=[node.get_content() for node in response.source_nodes],               ``             expected_output=ground_truth[i],               ``         )               ``         test_cases.append(test_case)               ``return EvaluationDataset(test_cases=test_cases)`              `   ``   ``   ``dataset = generate_dataset()`              `   ``   ``   ``@pytest.mark.parametrize(              ``     "test_case",               ``dataset,`              `)`              `def test_rag(test_case: LLMTestCase):              ``     answer_relevancy_metric = AnswerRelevancyMetric(model="gpt-3.5-turbo")               ``     faithfulness_metric = FaithfulnessMetric(model="gpt-3.5-turbo")               ``     context_relevancy_metric = ContextualRelevancyMetric(model="gpt-3.5-turbo")               ``     assert_test(               ``         test_case,               ``         [answer_relevancy_metric, faithfulness_metric, context_relevancy_metric],               ``)`    

在这个例子中:

构建一个包含问题、生成的答案、上下文和真相的测试数据集。

使用像 Faithfulness、Answer Relevance 和 Context Relevance 这样的度量标准。

DeepEval 默认使用 gpt-4,但为了成本效益,您可以指定其他模型,比如 gpt-3.5-turbo。

评估度量标准的阈值默认设置为 0.5,表示低于此值的分数表示测试失败。

运行测试文件 deepeval test run test_deepeval.py 来执行评估任务。DeepEval 会在终端输出评估结果。如果测试通过,您将看到 PASSED;如果没有,将看到 FAILED。

评估结果

虽然终端结果可能不方便查看,但DeepEval提供了访问评估结果的替代方式。您可以通过设置环境变量 export DEEPEVAL_RESULTS_FOLDER=“./output” 将它们保存到本地JSON文件中。

这将结果保存在指定的文件夹中。

查看结果的另一种方式是通过Confident平台。使用您的API密钥登录,使用 deepeval login --confident-api-key your_api_key,然后运行测试。

结果会自动上传到Confident平台,使其更容易查看。以下是Confident上的评估结果的屏幕截图:

Confident还允许您将结果导出为CSV文件以供本地查看:

UpTrain

UpTrain 是一个用于评估和改进LLM应用程序的开源平台。它在这里讨论的工具中拥有最广泛的评估指标集。

评估指标

UpTrain的评估指标适用于RAG应用程序和其他LLM应用程序。以下是一些指标:

  • 响应匹配:评估答案和真相之间的一致性。

  • 响应完整性:衡量答案是否涵盖了问题的所有方面。

  • 响应简洁性:检查答案是否包含无关内容。

  • 响应相关性:评估答案和问题之间的相关性。

  • 响应有效性:评估答案是否有效,避免类似于“我不知道”的回答。

  • 响应一致性:评估答案,问题和上下文之间的一致性。

  • 上下文相关性:衡量上下文和问题之间的相关性。

  • 上下文利用:评估答案是否利用上下文来涵盖所有要点。

  • 事实准确性:检查答案是否在事实上准确,并是否源自上下文。

  • 上下文简洁性:衡量上下文是否简洁,避免无关信息。

  • 上下文重新排序:评估重新排序后的上下文的有效性。

  • 越狱检测:评估问题是否包含越狱线索。

  • 提示注入:衡量问题是否可能导致泄露系统提示。

  • 语言特征:评估答案是否简洁、连贯,并且没有语法错误。

  • 语调:检查答案是否符合特定语调。

  • 子查询完整性:评估子问题是否涵盖了问题的所有方面。

  • 多查询准确性:评估问题的变体是否与原始问题一致。

  • 代码幻觉:评估答案中的代码是否与上下文相关。

  • 用户满意度:评估用户在对话中的满意度。

使用示例

UpTrain 与 LlamaIndex 集成,允许您使用 EvalLlamaIndex 创建评估对象。以下是一个示例:

`import os`              `import json`              `from uptrain import EvalLlamaIndex, Evals, ResponseMatching, Settings`              `   ``   ``   ``settings = Settings(              ``openai_api_key=os.getenv("OPENAI_API_KEY"),`              `)`              `data = []`              `for i inrange(len(questions)):              ``     data.append(               ``         {               ``             "question": questions[i],               ``             "ground_truth": ground_truth[i],               ``         }               ``)`              `llamaindex_object = EvalLlamaIndex(settings=settings, query_engine=query_engine)`              `results = llamaindex_object.evaluate(              ``     data=data,               ``     checks=[               ``         ResponseMatching(),               ``         Evals.CONTEXT_RELEVANCE,               ``         Evals.FACTUAL_ACCURACY,               ``         Evals.RESPONSE_RELEVANCE,               ``],`              `)`              `withopen("output/uptrain-evaluate.json", "w") as json_file:              ``json.dump(results, json_file, indent=2)`    

在这个例子中,我们:

  • 使用 OpenAI 的 API 密钥进行 UpTrain。

  • 初始数据集只需要 Question 和 Ground Truth。Answer 和 Context 是由 EvalLlamaIndex 生成的。

  • 包括常见的评估指标。

  • 将结果保存在一个 JSON 文件中。

评估结果

评估结果存储在 JSON 文件中。为了更容易比较,将结果转换为 CSV 格式。以下是 UpTrain 的评估结果:

在 UpTrain 的评估结果中,Response Matching 分数有时可能看起来不准确。运行 Response Matching 后,您可能会得到三个分数:score_response_match、score_response_match_recall 和 score_response_match_precision。

即使 Answer 和 Ground Truth 看起来相似,这些分数可能为 0。目前尚不清楚为什么会发生这种情况;如果您知道,请在下方评论。

比较分析

  • 评估指标:TruLens 的指标较少,而 DeepEval 和 UpTrain 拥有广泛的指标。Ragas 的指标数量适中,涵盖了 RAG 应用的所有关键方面。

  • 自定义评估:DeepEval 和 UpTrain 支持自定义指标,而 TruLens 和 Ragas 不支持。

  • 自定义LLMs:大多数工具支持自定义LLMs。Ragas 通过 LangChain 实现此功能。

  • 框架集成:大多数工具支持与 LlamaIndex 和 LangChain 的集成,但 DeepEval 和 UpTrain 仅支持与 LlamaIndex 的集成。

  • WebUI:基于Web的界面可以更轻松地查看结果。TruLens、DeepEval 和 UpTrain 支持此功能;Ragas 不支持,尽管您可以使用第三方工具来查看结果。

  • 分数解释:除 Ragas 外,所有工具都提供分数解释。DeepEval 可帮助 Ragas 生成这些解释。

  • 单元测试:DeepEval 提供类似单元测试的评估任务,这在这些工具中是独特的。

TruLens 和 Ragas 是最早的 RAG 评估工具之一,而 DeepEval 和 UpTrain 则是后来出现的。这些更新的工具可能受到早期工具的启发,从而拥有更全面的指标和改进的功能。然而,TruLens 和 Ragas 仍然具有独特的优势,例如 TruLens 直观的结果和 Ragas 为 RAG 应用量身定制的指标。

结论

本文讨论了与 LlamaIndex 集成的各种 RAG 评估工具,并比较了它们的特性。这些工具帮助开发人员更好地理解和优化 RAG 应用程序。还有其他未在此提及的工具,比如 LlamaIndex 的内置评估工具和 Tonic Validate。如果您不确定选择哪种评估工具,请从一个项目开始使用它。如果不符合您的需求,请尝试另一个。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 21
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值