欢迎来到这个系列,了解如何使用时间融合Transformer(TFT)构建一个可解释的模型,用于高频股票价格预测。在这个系列中,我们将深入探讨训练一个不仅能预测股票价格,而且能提供置信区间,使其成为风险评估的宝贵工具的模型的步骤。从数据收集和预处理到模型训练、评估和解释,每篇文章都将指导您完成过程中的关键阶段。
在第一部分中,我们将从基础开始:收集正确的数据并执行探索性数据分析(EDA),以了解高频股票数据中的趋势、模式和潜在陷阱。
背景和动机
股票市场是一个动态且经常不可预测的环境。成功的日内交易者依赖的不仅仅是预测,还有高回报与风险的交易。即使交易者只有50%的时间正确预测股票的方向,如果每次交易的平均回报超过平均风险,他们仍然可以盈利。自动化交易算法帮助交易者从交易中去除情感,使他们能够专注于技术指标和系统性决策。
使用我们的时间融合Transformer模型,目标不是实现完美的预测准确度(在金融市场上是不可能的壮举),而是开发一个可以识别高概率变动的模型,同时评估与每个预测相关的风险。通过专注于精确度并使用置信区间,该模型可以作为做出更明智交易决策的宝贵工具。
数据收集和准备
在这个项目中,我收集了平均每日交易量超过100万股的股票的1分钟日内数据。这个数据集涵盖了从2024年1月1日到2024年7月11日的6个月,总共超过1500只股票。对于每只股票,我收集了标准的OHLCV(开盘、最高、最低、收盘、成交量)数据,捕捉了整个交易日的每个价格变动。为了简化数据处理过程,我将这些数据保存在一个单一的.parquet文件中,以便有效访问和分析。
数据加载和初始清理
在Jupyter Notebook中,我开始导入数据操作、可视化和建模所需的基本库。以下是一些使用中的库的示例:
import pandas as pd
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from datetime import datetime
然后加载数据集并将日期设置为基于时间的分析的索引:
df = pd.read_parquet("data.parquet")
df.set_index("datetime", inplace=True)
df.sample(10) # 打印数据集中的10个随机行
输出:
为了了解我要处理的数据量,我使用 df.info()
来获取这些信息:
# 这个数据框相当大,包含超过6600万行,使用超过4.5 GB的内存。
为了使其更易于管理,并过滤掉流动性不佳的股票,我使用“股票平均名义成交量”,这是通过将日均成交量乘以平均价格来计算的。我只保留平均名义成交量最高的前100只股票。
def resample_to_daily(group):
resampled_group = group.resample('D').agg({
'open':'first',
'high':'max',
'low':'min',
'close':'last',
'volume':'sum'
}).dropna()
return resampled_group
# 应用重采样函数到每个组
df_daily = df.groupby('symbol').apply(resample_to_daily).reset_index()
df_daily["stock_median_volume"]= df_daily.groupby("symbol")["volume"].transform("median").astype(int)
df_daily["stock_average_price"]= df_daily.groupby("symbol")["close"].transform("mean")
df_daily["stock_average_nominal_volume"]= df_daily["stock_median_volume"]* df_daily["stock_average_price"]
top_100_symbols = df_daily.groupby("symbol")['stock_average_nominal_volume'].median().nlargest(100).index
# 过滤数据框以保留名义成交量最高的前100只股票
df_daily = df_daily[df_daily['symbol'].isin(list(top_100_symbols))]
df = df[df['symbol'].isin(list(top_100_symbols))]
print(f"Number of total one minute bars after resampling: {df.shape[0]}")
print(f"Symbols: {df_daily.symbol.unique()}")
输出:
重采样后总的1分钟K线数量:165367
符号:['AAL' 'AAPL' 'ABBV' 'ABNB' 'ABT' 'ADBE' 'AM' 'AMD' 'AMZN' 'ANET' 'AVGO' ...]
EDA和特征工程 在下一步中,我进行探索性数据分析(EDA),以了解我们过滤后的数据集的关键特征,并开始特征工程以提取相关指标。通过可视化趋势、价格分布和成交量变化,我旨在揭示可能指导我们预测模型的模式和洞察。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。