选择适合你的AI技术架构:自训练模型 vs Prompt工程 vs LangChain专业垂类知识库

在当今人工智能快速发展的时代,选择适合自己项目的技术方案是至关重要的。本文将通过举例详细对比三种技术逻辑,帮助你选择最适合你项目的方案:自训练专业垂类模型、Prompt工程对知识精准度要求低、Prompt工程LangChain专业垂类知识库。

一、自训练专业垂类模型

举例:假设你在开发一个用于医学图像诊断的AI系统。

在这里插入图片描述

  1. 获取标注数据:你需要收集大量的医学图像数据,并由专业的医学专家进行标注。这个过程通常需要1个月的时间。

  2. 在数据上训练模型:使用标注的数据训练一个深度学习模型,这个过程需要2个月的时间。

  3. 部署和调用模型:训练完成后,你需要将模型部署到实际环境中,并进行测试和优化,这个过程大约需要3个月的时间。

优势:

  • 高精度:适用于需要高精度的专业应用,例如医学图像分析、金融风险评估等。

劣势:

  • 高成本:数据收集和标注成本高,训练周期长,对硬件要求高。

总结:如果你的项目需要高度专业化且精度要求高,例如医学诊断系统,这是一个理想的选择。

二、Prompt工程对知识精准度要求低

举例:假设你在开发一个自动生成社交媒体内容的AI工具。

  1. 指定提示词:例如,你可以输入“生成一篇关于夏季旅游的文章”。这个过程通常只需几分钟到几小时。

  2. 调用模型:AI模型根据提示词生成内容,这个过程同样只需几分钟到几小时。

优势:

  • 开发速度快:适用于需要快速迭代和灵活调整的应用。

  • 成本低:不需要大量的数据收集和标注。

劣势:

  • 精度较低:不适用于需要高度专业化和精度要求高的应用。

总结:如果你的项目对知识精准度要求不高,例如自动文章生成、社交媒体内容创作等,这是一个理想的选择。

三、Prompt工程LangChain专业垂类知识库

举例:假设你在开发一个智能客服系统,用于技术支持。

  1. 本地文档加载器:加载公司的技术文档和FAQ资料,处理非结构化数据。

  2. 文本分割:将技术文档分割成小段,便于处理。

  3. 文本嵌入:将文本段转换成向量,以便进行向量匹配。

  4. 向量存储:将向量存储起来,供后续查询使用。

  5. 查询向量:用户提出技术问题,系统将问题转换成向量。

  6. 向量相似度匹配:系统通过向量相似度匹配,找到最相关的技术文档段落。

  7. 提示模板:生成提示,调用大语言模型(LLM)进行回答。

优势:

  • 快速响应:结合Prompt工程的快速响应能力。

  • 高准确度:利用专业知识库,提高回答的准确性和专业性。

劣势:

  • 需要一定的前期准备:需要加载和处理大量的本地文档。

总结:如果你的项目需要快速响应且对知识有一定准确度要求,例如智能客服、技术支持等,这是一个理想的选择。

四、结论

在选择适合自己项目的技术方案时,应该根据项目的具体需求来决定:

  • 高度专业化和高精度需求:选择自训练专业垂类模型,例如医学诊断系统。

  • 快速迭代和灵活调整需求:选择Prompt工程,例如自动文章生成、社交媒体内容创作。

  • 快速响应和一定准确度需求:选择Prompt工程LangChain专业垂类知识库,例如智能客服、技术支持。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户现在问的是如何将深度求索(DeepSeek)和自己的知识库结合起来使用。之前他们问过Vue怎么接入智能对话,现在可能是在扩展他们的项目,需要结合特定的大模型和自己的数据。首先,我需要确认DeepSeek是否提供了相关的API或者文档支持知识库集成。可能用户已经知道如何调用基础API,但现在需要进一步的知识库整合。 用户可能的需求是,他们有自己的数据,比如产品信息、文档或者FAQ,想要让DeepSeek在回答时能够基于这些数据生成更准确的回复。这时候可能需要用到RAG(检索增强生成)技术,或者利用微调的方法让模型适应特定领域的数据。 接下来,我得考虑两种主要方法:检索增强生成(RAG)和模型微调。RAG适合实时检索外部知识库,而微调则是让模型学习特定领域的数据。用户可能没有太多训练资源,所以RAG可能更可行,尤其是如果他们希望知识库可以动态更新的话。 然后需要分步骤说明。首先准备知识库,可能需要处理成文本向量,存储在向量数据库中。然后,在用户提问时,先检索相关知识,再结合这些信息生成回答。这涉及到文本嵌入模型和向量数据库的选择,比如Hugging Face的模型或OpenAIEmbeddings,向量数据库如FAISS或Pinecone。 另外,用户可能需要一个后端服务来处理检索和调用DeepSeek的API,前端用Vue展示,就像之前的问题那样。需要注意安全性,避免在前端暴露API密钥,所以建议通过后端代理。 用户可能还关心如何优化检索效果,比如分块策略、元数据过滤,以及如何处理知识库的更新。此外,成本也是一个问题,特别是如果知识库很大,生成嵌入向量可能会有开销,这时候分块和选择合适的模型很重要。 最后,要提醒用户注意事项,比如数据预处理的重要性、API调用的成本控制,以及回复的校验,确保生成的内容准确合理。可能还需要建议他们使用现有的开源框架,比如LangChain或LlamaIndex,来简化流程。</think>在 Vue 中接入 DeepSeek 并与其知识库结合使用,通常需要结合 **检索增强生成(RAG, Retrieval-Augmented Generation)** 技术。以下是详细实现流程: --- ### 一、整体架构 ```plaintext 用户输入 → Vue前端 → 后端服务 → 知识库检索 → DeepSeek API → 返回增强后的回答 ``` --- ### 二、具体步骤 #### 1. **准备知识库** - 将自有知识库文档转换为结构化数据: - 格式:TXT/PDF/Markdown → 分段文本 - 处理:文本清洗、分块(建议 256-512 tokens/块) - 生成向量嵌入(Embedding): - 使用模型:`text-embedding-3-small`、`bge-large-zh`(中文)或 DeepSeek 自带嵌入模型 - 存储到向量数据库:ChromaDB、FAISS、Pinecone 等 **示例代码(Python 处理知识库):** ```python from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings # 文本分块 splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=50) docs = splitter.split_documents(your_documents) # 生成嵌入 embedder = HuggingFaceEmbeddings(model_name="BAAI/bge-zh") vectors = embedder.embed_documents([doc.page_content for doc in docs]) # 存入向量数据库(以 ChromaDB 为例) import chromadb client = chromadb.PersistentClient(path="/path/to/db") collection = client.create_collection("knowledge_base") collection.add(embeddings=vectors, documents=[doc.page_content for doc in docs]) ``` --- #### 2. **前端集成(Vue)** 创建聊天组件,与后端 API 交互: ```vue <template> <div> <input v-model="input" @keyup.enter="sendQuery" /> <button @click="sendQuery">发送</button> <div v-html="response"></div> </div> </template> <script> export default { data() { return { input: '', response: '' }; }, methods: { async sendQuery() { try { const res = await fetch('https://your-api.com/ask', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ question: this.input }) }); const data = await res.json(); this.response = data.answer; } catch (error) { console.error('Error:', error); } } } }; </script> ``` --- #### 3. **后端服务(关键步骤)** 实现 RAG 流程: 1. 接收用户问题 2. 从向量数据库检索相关知识 3. 将检索结果 + 原始问题提交给 DeepSeek **Python 示例(FastAPI):** ```python from fastapi import FastAPI from pydantic import BaseModel import chromadb app = FastAPI() chroma_client = chromadb.PersistentClient(path="/path/to/db") collection = chroma_client.get_collection("knowledge_base") class Query(BaseModel): question: str @app.post("/ask") async def ask(query: Query): # 1. 检索知识库 question_embedding = embedder.embed_query(query.question) results = collection.query(query_embeddings=[question_embedding], n_results=3) # 2. 构建提示词 context = "\n".join(results['documents'][0]) prompt = f"""基于以下知识库内容回答问题: {context} 问题:{query.question} 答案:""" # 3. 调用 DeepSeek API deepseek_response = requests.post( "https://api.deepseek.com/v1/chat/completions", headers={"Authorization": "Bearer YOUR_API_KEY"}, json={ "model": "deepseek-chat", "messages": [{"role": "user", "content": prompt}] } ) return {"answer": deepseek_response.json()['choices'][0]['message']['content']} ``` --- ### 三、高级优化技巧 #### 1. **检索优化** - 混合搜索:结合向量检索 + 关键词匹配(BM25) - 元数据过滤:为文档块添加时间、来源等元数据 - 重排序:使用 `bge-reranker` 等模型优化检索结果排序 #### 2. **提示工程** ```python # 更好的提示词模板 prompt = f""" 你是一名专业助手,请严格根据以下信息回答问题。如果信息不足,请回答“我不清楚”。 参考信息: {context} 问题:{query.question} 请按照以下格式回答: 1. 核心要点(不超过50字) 2. 详细解释(分点列出) 3. 数据来源(如果有) """ ``` #### 3. **流式传输** 通过 SSE(Server-Sent Events)实现逐字输出: ```javascript // Vue 前端 const eventSource = new EventSource(`/ask-stream?question=${encodeURIComponent(input)}`); eventSource.onmessage = (e) => { this.response += JSON.parse(e.data).token; }; ``` --- ### 四、注意事项 1. **知识更新**:定期同步最新数据到向量库 2. **权限控制**:通过 JWT 验证用户访问权限 3. **成本控制**:监控 API 调用量和 token 消耗 4. **错误处理**:添加网络重试、限流机制 如果需要更具体的实现细节(如本地部署方案、私有化知识库处理),可以进一步说明需求!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值