这篇论文的标题是《Pan-cancer integrative histology-genomic analysis via multimodal deep learning》,由Richard J. Chen等人撰写,发表在《Cancer Cell》期刊上。论文的主要内容是介绍了一种使用多模态深度学习技术整合病理切片图像和分子特征来预测癌症预后的方法。这种方法还提供了多模态可解释性,以阐明形态学和分子预后相关性。
一、文章概述
这篇文章介绍了一种创新的多模态深度学习框架,用于整合病理全切片图像和分子数据,以预测多种癌症类型的患者预后。研究团队开发了一个名为PORPOISE的平台,它结合了注意力机制的多实例学习和自归一化网络,来分析来自14种不同癌症类型的数千个患者的数据。这个平台不仅提高了预后模型的准确性,还通过模型解释性分析,揭示了影响患者生存的形态学和分子特征。
二、核心创新点
-
多模态深度学习框架:提出了一个新颖的多模态深度学习框架,能够整合病理切片图像和分子特征数据,这在癌症预后分析中是相对少见的。
-
弱监督学习算法:开发了一种弱监督的多模态深度学习算法,可以在只有有限标注信息的情况下,如仅使用患者的生存时间作为标注,来训练模型。
-
多模态特征融合:通过Kronecker积融合病理图像和分子数据,这种融合方法能够捕捉两种模态之间的复杂交互作用。
-
模型可解释性:提供了一种多模态数据融合的可解释性分析方法,这在深度学习模型中尤为重要,因为它可以帮助研究者和临床医生理解模型的预测依据。
-
交互式开放访问数据库:创建了一个交互式、开放访问的数据库,允许研究人员和临床医生进一步探索、发现生物标志物和评估特征,这增加了研究的透明度和可重复性。
-
跨癌症类型的泛化能力:该研究涵盖了14种不同的癌症类型,显示了模型在多种癌症中的泛化能力,这在以往的研究中不常见。
-
预后模型的改进:通过多模态数据融合,相比于单独使用病理图像或分子数据的模型,预后模型的性能得到了显著提升。
-
计算病理学的应用:该研究推动了计算病理学领域的发展,特别是在自动化诊断和肿瘤微环境特征量化方面。
-
新生物标志物的发现:通过多模态数据融合和可解释性分析,该研究有助于发现新的预后生物标志物,这对于癌症治疗和药物开发具有潜在价值。
三、实验结果
-
A展示了使用多模态算法处理数字化的高分辨率H&E染色的组织切片(WSIs)和相应的分子数据的流程。
-
B至F描述了如何利用注意力和归因解释性来评估所有患者预测标记物的过程。
-
A展示了通过MMF对所有14种癌症类型的低风险和高风险患者进行Kaplan-Meier分析。
-
B展示了SNN、AMIL和MMF在每种癌症类型中的c-Index性能比较。
-
C展示了14种癌症类型中WSI归因分布的情况。
-
A至C展示了KIRC的模型性能、局部模型解释和全局可解释性分析。
-
D展示了SNN和MMF在KIRC中识别出的免疫相关和预后标记物。
-
A至C展示了KIRP的模型性能、局部模型解释和全局可解释性分析。
-
D展示了SNN和MMF在KIRP中识别出的免疫相关和预后标记物。
-
A至C展示了LGGs的模型性能、局部模型解释和全局可解释性分析。
-
D展示了SNN和MMF在LGGs中识别出的免疫相关和预后标记物。
-
A至C展示了PAAD的模型性能、局部模型解释和全局可解释性分析。
-
D展示了SNN和MMF在PAAD中识别出的免疫相关和预后标记物。
上图展示了在预测的低风险和高风险患者中肿瘤浸润性淋巴细胞(TIL)的存在情况。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。