今日文献分享:
Pan-cancer integrative histology-genomic analysis via multimodal deep learning
通过多模态深度学习进行的泛癌整合组织学-基因组分析
癌症是一种复杂的疾病,其诊断和治疗需要综合考虑病理形态和基因组特征。这篇发布于2022年的一项研究利用多模态深度学习技术,成功地整合了全切片病理图像和分子特征,为癌症预后预测提供了新的方法,为癌症的精准治疗带来了希望。
研究亮点速览
研究方法
-
多模态融合:采用多模态深度学习算法,整合了H&E染色的全切片图像(WSIs)和分子特征(突变状态、拷贝数变异、RNA测序表达),用于癌症预后评估。
-
弱监督学习:使用弱监督学习范式,通过5倍交叉验证训练模型,提高了模型的泛化能力和鲁棒性。
研究成果
-
预后模型改进:多模态融合显著改善了大多数癌症类型的预后模型,在14种癌症类型中,有12种癌症类型的c-Index性能得到了提高。
-
模态重要性量化:量化了每个模态在癌症预后中的重要性,发现分子特征在大多数癌症类型中对生存预测的贡献更大,但WSIs在某些癌症类型中也具有重要作用。
临床价值
-
精准风险分层:为癌症患者提供了更精准的风险分层,有助于医生制定更个性化的治疗方案。
-
治疗决策支持:有助于发现和验证多模态生物标志物,为癌症的治疗决策提供支持。
研究方法
数据收集与预处理
- 数据来源:从The Cancer Genome Atlas(TCGA)中收集了14种癌症类型的6,592张高分辨率H&E染色全切片图像和相应的分子数据,共涉及5,720名患者。
数据预处理
-
图像分割:使用CLAM工具对WSIs进行自动组织分割。
-
特征提取:从分割后的组织区域中提取256×256大小的图像块,使用ResNet50模型将其转换为1024维的特征向量。
模型架构与训练
- 模型架构:提出了一种用于整合WSIs和分子特征的多模态深度学习算法,包括注意力基于的多实例学习(AMIL)网络、自归一化网络(SNN)和多模态融合层。
训练方法
-
训练目标:使用生存分析任务进行训练,优化模型的预测性能和泛化能力。
-
训练过程:将患者的WSIs和分子特征作为输入,通过5倍交叉验证训练模型,共训练20个epoch。
模型评估与解释
- 模型评估指标:使用交叉验证的一致性指数(c-Index)、生存曲线下面积(AUC)和对数秩检验等指标评估模型的性能。
模型解释方法
-
局部解释:通过注意力热图和归因决策图等可视化工具,解释了WSIs和分子特征如何分别用于预测癌症预后。
-
全局解释:通过分析细胞类型频率和基因特征归因等方法,解释了模型在全局水平上的决策过程。
*该图(Figure 1)*呈现 了PORPOISE 的工作流程,包括数据输入、多模态算法处理及结果输出。
研究成果
多模态融合改善预后模型
-
模型性能提升:多模态融合模型在14种癌症类型中的平均c-Index为0.644,优于仅使用WSIs的AMIL模型(0.578)和仅使用分子特征的SNN模型(0.606)。
-
癌症类型差异:不同癌症类型中,多模态融合模型的性能提升程度有所不同,其中肾乳头状细胞癌(KIRP)和胰腺腺癌(PAAD)的性能提升最为显著。
模态重要性量化
-
分子特征主导:分子特征在大多数癌症类型中对生存预测的贡献更大,平均占所有输入归因的83.2%。
-
WSIs的作用:WSIs在某些癌症类型中也具有重要作用,如子宫体子宫内膜癌(UCEC)中WSIs占所有输入归因的55.1%。
模型可解释性发现
-
形态学特征与预后:通过分析高注意力区域的WSIs,发现低风险患者的高注意力区域与更多的免疫细胞存在和更低的肿瘤等级相关,而高风险患者的高注意力区域与更多的肿瘤细胞存在和肿瘤侵袭相关。
-
分子特征与预后:梯度基可解释性方法能够识别许多已知的癌基因和免疫相关基因,如IDH1突变、PIK3CA突变和VHL突变等,这些基因在癌症的发生和发展中起着重要作用。
-
TILs与预后:肿瘤浸润淋巴细胞(TILs)的存在与癌症预后密切相关,在9种癌症类型中,TILs的存在在低风险患者中显著增加,表明TILs可以作为癌症预后的一个重要标志物。
研究结论
该研究提出了一种基于多模态深度学习的癌症预后预测方法,通过整合WSIs和分子特征,成功地改善了大多数癌症类型的预后模型。模型的可解释性分析为癌症的病理诊断和治疗提供了新的见解,发现了一些与癌症预后相关的形态学和分子特征。未来的研究可以进一步优化模型,提高其预测性能和泛化能力,并将其应用于临床实践中,为癌症的精准治疗提供更好的支持。
科研启发与思考
- 模型优化方向
-
数据增强:探索使用数据增强技术,如旋转、翻转、裁剪等,增加数据的多样性,提高模型的泛化能力。
-
多模态融合策略:研究不同模态之间的融合策略,如早期融合、中期融合和晚期融合等,以提高模型的性能。
- 临床应用拓展
-
个性化治疗:利用多模态深度学习模型为癌症患者提供个性化的治疗方案,根据患者的病理特征和分子特征,制定最适合患者的治疗策略。
-
药物研发:通过对癌症细胞的多模态特征分析,发现新的药物靶点和治疗方法,为癌症的药物研发提供支持。
- 数据管理与共享
-
数据质量控制:加强对病理数据和分子数据的质量控制,确保数据的准确性和可靠性。
-
数据共享平台:建立一个统一的数据共享平台,促进癌症研究数据的共享和交流,推动癌症研究的发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。