论文信息
题目:Polyp-Mamba: Polyp Segmentation with Visual Mamba
基于视觉Mamba的息肉分割方法
论文创新点
-
尺度感知语义模块(Scale-Aware Semantics Module, SAS):该模块通过视觉状态空间(Visual State Space, VSS)块在多个尺度上分析和解释语义信息,实现从细节到广泛的粒度的语义数据建模。这使得模型能够捕捉跨尺度依赖性,增强了对不同尺度特征的理解和利用。
-
全局语义注入模块(Global Semantics Injection Module, GSI):该模块利用交叉注意力机制将全局语义信息注入到局部特征中,以缩小全局特征和局部特征之间的语义差距。这种注入有助于模型更准确地识别息肉与正常组织之间的边界,提高分割质量。
-
跨尺度特征融合:Polyp-Mamba框架通过SAS模块融合了不同尺度的特征,这有助于模型捕捉到息肉的局部细节和全局上下文信息,从而提升分割的准确性。
摘要
在结肠镜筛查中,准确分割息肉对高效结直肠癌检测至关重要。最近,状态空间模型(例如 Mamba)作为一种有前景的方法出现,它在建立长期依赖关系方面表现出色,并且计算复杂度与输入大小呈线性关系。然而,先前的方法没有考虑不同像素之间的跨尺度依赖性以及特征表示和语义嵌入中的一致性,这对于息肉分割至关重要。因此,我们引入了 Polyp-Mamba,这是一个新颖的统一框架,旨在通过整合多尺度特征学习和语义结构分析来克服上述限制。具体来说,我们的框架包括一个尺度感知语义模块,该模块能够将编码器中的多尺度特征嵌入到语义信息建模中,实现跨尺度的内部和跨尺度的建模,而不是先前研究中采用的单尺度方法。此外,部署了全局语义注入模块,以将尺度感知语义注入到相应的解码器特征中,旨在融合全局和局部信息,并增强金字塔特征表示。实验结果在五个具有挑战性的数据集和六个指标上表明,我们提出的方法不仅超越了最先进的方法,而且树立了该领域的新基准,突显了 Polyp-Mamba 框架在息肉分割任务中的卓越能力。
关键字
息肉分割 · Mamba · 尺度感知语义
2 方法
2.1 架构概述
如图 1 所示,提出的 Polyp-Mamba 架构从 UNet 和 Swin-UNet 中汲取灵感。Patch Embedding 层首先将输入图像 分割成不重叠的 块,然后映射到 ,得到嵌入图像 。
在编码器中进行特征提取之前,对 应用 Layer Normalization。编码器由四个阶段组成,在前三个阶段的末尾使用 Patch Merging 操作来降低输入特征的高度和宽度,同时将通道数翻倍。在四个阶段中,我们使用 VSS 块,每个阶段的通道数为 。与编码器相对应的,解码器由 VSS 块和 Patch Expanding 层组成,后者通过跳跃连接恢复下采样过程中丢失的细节,实现与编码器相同的特征大小输出。在解码器之后,Final Projection 层通过 Patch Expansion 进行 4 倍上采样,以恢复特征的原始高度和宽度,然后通过一个投影层调整通道数以匹配分割目标。VSS 块作为 SAS 模块,接收来自编码器的多尺度特征作为输入,并生成具有尺度感知能力的语义。这些语义通过 GSI 模块注入到相应的尺度特征中,以增强模型的表示能力。这些模块的更多细节在后续部分讨论。
2.2 编码器和解码器
在 Polyp-Mamba 框架中,编码器首先通过两个连续的 VSS 块处理降分辨率的 C 维标记输入,同时保持原始尺寸和分辨率。然后,编码器应用三重 Patch Merging 操作作为下采样过程,将输入分割成四分之一大小的象限,将它们连接起来,并通过层归一化来归一化尺寸,从而减半标记数量并翻倍特征维度。相应地,解码器反映了编码器的结构,使用两个连续的 VSS 块和 Patch Expanding 层进行特征重建。与编码器中的合并层不同,解码器的扩展层通过 上采样来增强分辨率,并将特征维度减半。这种设计允许解码器既能增强分辨率,又能恢复深度特征,为最终预测提供丰富的空间细节。
2.3 尺度感知语义模块
VSS 块,源自 VMamba,是 Poly-Mamba 的核心模块,SAS 模块由多个堆叠的 VSS 块组成。VSS 块的数量表示为 。每个 VSS 块包括一个 -Selective-Scan (SS2D) 模块、线性层和残差连接,如图 1 (b) 所示。在层归一化之后,输入被分成两个分支。在第一个分支中,输入通过线性层和激活函数。在第二个分支中,输入通过线性层、深度可分离卷积和激活函数处理,然后输入到 SS2D 模块进行进一步的特征提取。随后,特征通过层归一化进行归一化,并与第一个分支的输出通过逐元素乘法合并两个路径。最后,特征通过线性层混合,并且这个结果与残差连接结合形成 VSS 块的输出。SiLU 被用作默认的激活函数。如图 1 (a) 所示,尺度感知语义模块接收多尺度特征作为输入。为了进一步降低计算负荷,平均池化操作符用于将不同尺度的标记数量从输入大小的 减少。不同尺度的池化标记现在具有相同的分辨率,并作为 VSS 块的输入连接在一起。该模块能够获得全图像感受野和丰富的语义。具体来说,SS2D 使空间信息交换成为可能,而卷积层使跨尺度特征交互成为可能。在每个 VSS 块中,在交换了所有尺度的特征信息之后,学习残差映射,然后将其添加到特征中以增强表示和语义。最后,在通过几个 VSS 块处理后获得尺度感知语义。
2.4 全局语义注入模块
在获得尺度感知语义之后,我们直接将其与其他特征 集成。然而,特征 和尺度感知语义之间存在显著的语义差距,这可能会导致在准确识别息肉和正常组织之间的边界时遇到困难,影响分割结果的质量。因此,引入了 GSI 模块,在通过交叉注意力机制合并特征之前弥合语义差距。如图 1 © 所示,GSI 采用编码器中的不同局部特征和来自 VSS 的全局语义作为输入。局部特征通过 卷积层,然后进行批量归一化,以生成要注入的特征。全局语义被送入 卷积层,然后进行批量归一化和 sigmoid 层,以产生语义权重。同时,全局语义还通过 卷积层和批量归一化。这三个过程的输出大小是统一的。然后,这些全局语义通过哈达玛德积注入到局部标记中,并且注入后的特征被添加到全局语义中。几个 GSI 的输出具有相同数量的通道,表示为 。
2.5 损失函数
我们的目标是优化基于 SSM 的 Polyp-Mamba 模型在息肉分割任务中的性能。[26] 报告说,在不同层次上结合多个损失函数和自适应权重可以提高框架的性能并加快收敛速度。因此,我们使用二元交叉熵损失 和加权 IoU 损失 进行监督。 和 是权重系数。提出的 Polyp-Mamba 的总损失 可以表示为:
3 实验和结果
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。