Vision Mamba:医学图像分割的高效新突破!

Mamba架构在医学图像分割领域取得了显著进展。它通过结合CNNTransformer的优势,有效解决了传统方法在长距离依赖建模上的不足,为精准医疗提供了更强大的技术支持,推动了医学图像分析的发展。

提出了一种基于Mamba的新型U-Net架构,通过引入选择性状态空间模型和多尺度卷积模块,显著提升了医学图像分割的精度和效率。

这种技术能够更精准地分割医学图像中的关键区域,提高疾病诊断的准确性,为患者带来更好的治疗效果。

我整理了10【CMU结合】的相关论文,全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “CMU结合”领取~

1.Surface Vision Mamba: Leveraging Bidirectional State Space Model for Efficient  Spherical Manifold Representation

文章针对非欧几里得数据处理难题,提出 Surface Vision Mamba(SiM)模型。将其应用于大脑皮质表面数据分析,经多任务实验,展现出在精度、速度和内存方面的优势,为相关研究提供新方向。

  • 创新点

1.提出 SiM 模型,将 Vision Mamba 拓展到球面流形数据领域,为分析大脑皮质表面数据提供通用骨干网络。

2.探索不同输入序列长度对非欧几里得空间表面数据的影响,并进行自回归预训练,验证方法有效性。

3.在多个神经发育表型回归任务中,SiM 相比注意力和 GDL 模型,推理速度更快、内存消耗更低 。

  • 研究结论

1.SiM 在神经发育表型预测任务中表现出色,在预测婴儿大脑年龄、语言和运动得分上优势明显。

2.模型对序列长度敏感,自回归预训练受样本量限制效果有限,但长序列有助于更精细分析。

3.SiM 推理速度快、内存消耗低,且具有可解释性,在医学研究和应用中潜力大。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “CMU结合”领取~

2.VM-UNet: Vision Mamba UNet for Medical Image  Segmentation

文章针对 CNN 和 Transformer 在医学图像分割中的局限,提出基于状态空间模型的 VM-UNet。经多数据集实验,验证其在捕捉长距离信息和分割性能上的优势,为医学图像分割提供新选择。

  • 创新点

1.首次提出基于纯状态空间模型的医学图像分割模型 VM-UNet,探索其在该领域的应用潜力。

2.采用 VSS 块作为核心模块,结合非对称编解码器结构,降低计算成本,提高分割性能。

3.在多个数据集上进行实验,为纯 SSM 模型在医学图像分割任务中建立了性能基线。

研究方法

  • 研究结论

1.VM-UNet 在医学图像分割任务中表现出色,在多个指标上优于部分先进模型,具有竞争力。

2.预训练权重、Dropout 值和模型架构等因素对 VM-UNet 性能有显著影响。

3.未来可将 SSM 应用于更多医学成像任务,进一步探索其在医学领域的潜力。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “CMU结合”领取~

3.A Fuzzy-Boundary Enhanced Trident Network for  Parcel Extraction in the Urban–Rural Area

文章针对城乡地区农田地块提取难题,提出 FBETNet 网络。融合多种策略与模块,经实验验证能增强模糊边界特征,提升多尺度地块提取精度,为城市管理提供更精准数据支持。

  • 创新点

1.提出语义引导多任务(GMT)策略,增强模糊边界特征提取能力,优化地块边界检测。

2.设计多尺度三叉戟(MST)模块,考虑不同尺度地块特征,提高提取结果准确性。

3.采用对抗数据增强(ADA)策略,提升模型在不同场景下的鲁棒性和泛化能力。

  • 研究结论

1.FBETNet 在地块提取任务中表现优异,在精度和可视化效果上超越对比方法,尤其擅长处理复杂形状和模糊边界地块。

2.经消融实验验证,GMT 策略、MST 模块和 ADA 策略均有效,且模块间相互补充,提升网络性能。

3.后续可进一步探索弱语义信息地块的提取,以提高模型对复杂语义信息地块的检测能力,优化实际应用效果。

全部论文PDF版可以关注工棕号{AI因斯坦}

回复  “CMU结合”领取~

顶会投稿交流群来啦!

欢迎大家加入顶会投稿交流群一起交流~这里会实时更新AI领域最新资讯、顶会最新动态等信息~

### 使用 Mamba 实现医学图像分割的具体步骤 #### 1. 数据准备 在开始医学图像分割之前,需要准备好高质量的训练数据集。这些数据通常包括标注好的医学图像及其对应的掩码(mask)。具体来说,可以参考以下内容: - **数据预处理**:对原始医学图像进行标准化、裁剪、缩放等操作,使其适合输入到神经网络中[^2]。 - **数据增强**:为了增加模型的鲁棒性,可以通过旋转、翻转、随机裁剪等方式扩充数据集。 #### 2. 模型选择与架构设计 Mamba 是一种灵活的框架,适用于多种医学图像分割任务。以下是几种常见的 Mamba 变体及其特点: - **LoG-VMamba**:结合局部和全局视觉特征,特别适合复杂背景下的医学图像分割[^1]。 - **SliceMamba**:通过双向切削扫描模块(BSS)改进了局部特征建模能力,在皮肤病变和息肉分割上表现优异[^3]。 - **KAN-Mamba FusionNet**:融合 KAN 的非线性建模能力和 Mamba 的注意力机制,进一步提升分割精度[^4]。 - **VM-UNet**:基于 Vision Mamba 和 U-Net 结构的设计,提供了一个高效且易于实现的解决方案[^5]。 根据具体的任务需求,可以选择合适的变体作为基础模型。 #### 3. 模型训练 模型训练是整个流程的核心部分,主要包括以下几个方面: - **损失函数定义**:常用的损失函数包括 Dice Loss、交叉熵损失以及组合损失。例如,VM-UNet 提出了专门针对医学图像分割优化的 loss function。 - **超参数调整**:学习率、批量大小、迭代次数等因素都会影响最终效果。建议从小规模实验入手逐步调优。 - **监控指标设置**:除了传统的 accuracy 外,还应关注 IoU(Intersection over Union)、Dice Coefficient 等更贴合分割任务的评价标准。 #### 4. 测试与评估 完成训练后需对模型进行全面测试以验证其泛化能力: - 利用独立于训练集之外的验证集来衡量性能; - 对预测结果可视化以便直观理解错误模式并据此改进算法逻辑。 #### 5. 部署应用 当达到满意的分割质量之后即可考虑实际部署场景的应用开发阶段: - 将训练好的权重文件导出并与前端界面集成形成完整的医疗辅助诊断工具; - 考虑实时性要求较高的场合可能还需要做额外的速度优化措施比如量化或者蒸馏技术降低计算负担。 ```python import torch from torchvision import transforms from log_vmamba import LoG_VMamba # 假设这是导入的一个具体实现类 def preprocess_image(image_path): transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) image = Image.open(image_path).convert('RGB') return transform(image) model = LoG_VMamba() checkpoint = torch.load("path_to_checkpoint.pth") # 加载已保存的最佳模型状态字典 model.load_state_dict(checkpoint['state_dict']) model.eval() test_img = preprocess_image("example_medical_image.png") output = model(test_img.unsqueeze(0)) predicted_mask = output.argmax(dim=1).squeeze().detach().numpy() # 获取二值化的分割掩膜 ``` 上述代码片段展示了如何加载预先训练过的 `LoG-VMamba` 模型并对单张图片执行推理过程得到相应的分割结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值