Mamba架构在医学图像分割领域取得了显著进展。它通过结合CNN和Transformer的优势,有效解决了传统方法在长距离依赖建模上的不足,为精准医疗提供了更强大的技术支持,推动了医学图像分析的发展。
提出了一种基于Mamba的新型U-Net架构,通过引入选择性状态空间模型和多尺度卷积模块,显著提升了医学图像分割的精度和效率。
这种技术能够更精准地分割医学图像中的关键区域,提高疾病诊断的准确性,为患者带来更好的治疗效果。
我整理了10种【CMU结合】的相关论文,全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “CMU结合”领取~
1.Surface Vision Mamba: Leveraging Bidirectional State Space Model for Efficient Spherical Manifold Representation
文章针对非欧几里得数据处理难题,提出 Surface Vision Mamba(SiM)模型。将其应用于大脑皮质表面数据分析,经多任务实验,展现出在精度、速度和内存方面的优势,为相关研究提供新方向。
-
创新点
1.提出 SiM 模型,将 Vision Mamba 拓展到球面流形数据领域,为分析大脑皮质表面数据提供通用骨干网络。
2.探索不同输入序列长度对非欧几里得空间表面数据的影响,并进行自回归预训练,验证方法有效性。
3.在多个神经发育表型回归任务中,SiM 相比注意力和 GDL 模型,推理速度更快、内存消耗更低 。
-
研究结论
1.SiM 在神经发育表型预测任务中表现出色,在预测婴儿大脑年龄、语言和运动得分上优势明显。
2.模型对序列长度敏感,自回归预训练受样本量限制效果有限,但长序列有助于更精细分析。
3.SiM 推理速度快、内存消耗低,且具有可解释性,在医学研究和应用中潜力大。
全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “CMU结合”领取~
2.VM-UNet: Vision Mamba UNet for Medical Image Segmentation
文章针对 CNN 和 Transformer 在医学图像分割中的局限,提出基于状态空间模型的 VM-UNet。经多数据集实验,验证其在捕捉长距离信息和分割性能上的优势,为医学图像分割提供新选择。
-
创新点
1.首次提出基于纯状态空间模型的医学图像分割模型 VM-UNet,探索其在该领域的应用潜力。
2.采用 VSS 块作为核心模块,结合非对称编解码器结构,降低计算成本,提高分割性能。
3.在多个数据集上进行实验,为纯 SSM 模型在医学图像分割任务中建立了性能基线。
研究方法
-
研究结论
1.VM-UNet 在医学图像分割任务中表现出色,在多个指标上优于部分先进模型,具有竞争力。
2.预训练权重、Dropout 值和模型架构等因素对 VM-UNet 性能有显著影响。
3.未来可将 SSM 应用于更多医学成像任务,进一步探索其在医学领域的潜力。
全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “CMU结合”领取~
3.A Fuzzy-Boundary Enhanced Trident Network for Parcel Extraction in the Urban–Rural Area
文章针对城乡地区农田地块提取难题,提出 FBETNet 网络。融合多种策略与模块,经实验验证能增强模糊边界特征,提升多尺度地块提取精度,为城市管理提供更精准数据支持。
-
创新点
1.提出语义引导多任务(GMT)策略,增强模糊边界特征提取能力,优化地块边界检测。
2.设计多尺度三叉戟(MST)模块,考虑不同尺度地块特征,提高提取结果准确性。
3.采用对抗数据增强(ADA)策略,提升模型在不同场景下的鲁棒性和泛化能力。
-
研究结论
1.FBETNet 在地块提取任务中表现优异,在精度和可视化效果上超越对比方法,尤其擅长处理复杂形状和模糊边界地块。
2.经消融实验验证,GMT 策略、MST 模块和 ADA 策略均有效,且模块间相互补充,提升网络性能。
3.后续可进一步探索弱语义信息地块的提取,以提高模型对复杂语义信息地块的检测能力,优化实际应用效果。
全部论文PDF版可以关注工棕号{AI因斯坦}
回复 “CMU结合”领取~
顶会投稿交流群来啦!
欢迎大家加入顶会投稿交流群一起交流~这里会实时更新AI领域最新资讯、顶会最新动态等信息~