人工智能的未来——AI Agent和Agentic AI的区别与联系

科学的本质就是怀疑一切

前几天有一个评论问我AI Agent和Agentic AI是否一样,有什么区别;当时看到这个问题就有点蒙,AI Agent我知道,但Agentic AI是什么,这个词还是第一次听说。

所以这几天就趁着摸鱼时间看了一下AI Agent和Agentic AI的区别,也在这里简单记录一下,可能理解的并不是很准确,但就当自己的学习记录吧。

AI Agent和Agentic AI的区别与联系

说实话刚开始看到Agentic AI 还是挺蒙的,这玩意和AI Agent是如此的相像,然后经过这两天查资料看文章,发现这个概念是一个叫吴恩达的教授提出来的;基本意思就是说Agentic AI是人工智能未来的样子,目前的人工智能存在一个很大的问题就是,它不具备自主思考和独立解决问题的能力;而且即使所谓的AI Agent也只能根据不同的应用场景设计不同功能的Agent,而无法直接做到让人工智能像一个真正的人类一样进行思考和解决问题。

我们都知道,目前的大模型是基于仿生学概念,通过神经网络模型,模仿人类大脑运作的原理,使用数学模型实现的一种基于概率和多种学科的研究成果而实现的一个伪智能,也就是说现在的大模型并不是真正的智能体,它离真正的人工智能还有很远的路要走。但以目前的技术来说,它仍然是一种最有可能实现人工智能的方法。

如果从人工智能的根本目的出发,人工智能的目的就是通过一种技术或方法来实现一个真正具备独立思考和解决问题能力的系统。而怎么让人工智能具备人类的智能,就是人工智能需要解决的根本问题。

而Agentic AI就属于一种实现具备独立思考和解决问题能力的人工智能的方法论或者说目标。

虽然说Agentic AI是一个新的概念,但它更多的是对AI Agent进行更加高级的抽象;也就是让一个解决某个问题的Agent能够变得通用,能够让它解决更多的问题。

技术的发展是一个不断摸索的过程,特别是在这些新兴领域,更是一个摸着石头过河的过程;Agentic AI概念的提出,或许能在以后证明它是正确的,当然也可能会被证明是错误的;但它都是人类探索人工智能实现的一个想法和思考。

所以,现在来回答这个问题,Agentic AI是什么?

Agentic AI是人工智能领域的一个探索,是实现真正的人工智能的一种设想,也是一种理念;但概念毕竟只是一个概念,到底怎么实现Agentic AI仍然是所有对人工智能感兴趣的从业者需要考虑的问题。

而AI Agent是目前能够被证明的,一种让大模型具备初步独立思考能力的一种方法论,并且也已经有了具体的实现方式,也就是有了具体的落地场景。

或许在将来,Agentic AI会通过别的方式被实现,也有可能会通过AI Agent的方式来实现Agentic AI。

所以,Agentic AI是一个目标;而AI Agent是一种具体的落地方案。

下面是chatGPT回答的关于Agentic AI和AI Agent的区别,感觉说的还是挺对的。

最后,任何天上飞的理念,都要有落地的实现,与君共勉。

Agentic AIAI Agent 是相关但有不同侧重点的概念,以下是它们的主要区别:


定义与侧重点

特性Agentic AIAI Agent
定义Agentic AI 描述的是人工智能具备自主性的能力和行为。AI Agent 是一种具体的实现形式,指的是一个用于执行特定任务的人工智能代理。
焦点关注的是能力和特性,如自主决策、目标导向性和适应性。关注的是实体形式,通常是实现某种任务的代理实例。
作用范围是一种更广泛的能力框架,可以用于多种场景和任务类型。是一个具体的“工具”或“角色”,为完成特定任务而创建。

核心功能

Agentic AI
  • 更像一种描述能力的概念,强调 AI 系统能够自主规划、决策和执行任务。

  • 关键特性

  1. 自主性:无需持续干预即可完成任务。

  2. 适应性:能应对复杂环境,调整行为。

  3. 目标导向性:主动实现复杂目标。

AI Agent
  • 是 Agentic AI 的一种具体实现,它是一个独立的程序实体,专注于完成明确的任务。

  • 关键特性

  1. 任务驱动:专注于预定义的任务。

  2. 环境交互:与用户或系统实时交互。

  3. 模块化设计:通常是一个更小的、单独部署的组件。


实际应用场景

Agentic AI
  • 广义框架,适用于复杂系统:

  • 自动驾驶系统:处理全局规划和实时变化的交通状况。

  • 智能金融分析:动态分析市场数据,自主调整投资策略。

  • 火星探测机器人:在长延迟通讯下自主探索和决策。

AI Agent
  • 具体的智能实体,通常功能单一:

  • 聊天机器人:回答用户问题。

  • 语音助手:处理特定语音指令(如查询天气)。

  • 游戏 AI:在游戏中作为对手角色进行交互。


技术实现与区别

特性Agentic AIAI Agent
实现难度需要复杂的算法设计,包括长期记忆、学习和推理能力。以较小的范围实现,可以使用有限规则或策略完成任务。
场景复杂性应用于动态、多任务和长期环境。更适用于特定、短期的明确任务。
核心技术通常包括强化学习、自然语言处理、规划算法等。使用简单的模型或规则,可能包括监督学习或逻辑规则。

关系

  1. Agentic AI 是一种更广泛的能力描述,而 AI Agent 是实现这种能力的一个实体。
  • Agentic AI 可以驱动多个 AI Agent 工作。
  1. AI Agent 不一定是 Agentic AI
  • 一个简单的聊天机器人可以是 AI Agent,但它可能没有 Agentic AI 的自主性或适应性。
  1. Agentic AI 可以构建 AI Agent
  • 具备 Agentic AI 的系统可以生成多个子代理来完成特定任务。

总结

  • Agentic AI:更倾向于描述人工智能的能力,专注于其自主性、适应性和目标导向行为。

  • AI Agent:是 Agentic AI 的一种应用形式,表现为具有具体功能的代理。

可以理解为,Agentic AI 是一项高级能力,而 AI Agent 是利用这种能力执行任务的具体体现。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值