【导读】随着数字化转型的深入,企业对智能化服务提出更高要求。3D数字人作为新一代人机交互界面,能够24小时在线为客户提供专业、个性化的服务体验。但传统云端API部署方案存在数据安全风险、网络依赖性强等问题。我们提供完整的数字人离线部署解决方案,让企业掌控核心数据资产,降低运营成本,提供稳定可靠的服务。
我们使用三台NVIDIA RTX 4090显卡成功部署的离线3D数字人实时互动系统的构建过程。该系统集成了自动语音识别(ASR)、大语言模型(LLM)、文生图、图像识别、文本转语音(TTS)、Audio2Face声音转3D模型嘴形同步、threejs渲染3D人物以及骨骼绑定技术,旨在实现高效、自然、数据安全的人机互动体验。
系统架构
系统的整体架构由多个模块组成,每个模块负责不同的功能:
-
自动语音识别(ASR):将用户的语音输入转换为文本,支持多种语言和方言。
-
文本转语音(TTS):将生成的文本转换为自然流畅的语音输出,增强互动的真实感。
-
大语言模型(LLM):处理用户输入的文本,生成适当的响应,支持复杂的对话场景。
-
Audio2Face:将生成的语音与3D数字人的面部表情进行同步,实现生动的表情变化。
硬件配置
为了确保系统的高效运行,选择了三台NVIDIA RTX 4090显卡、内存32G。这些显卡提供了强大的计算能力,能够处理复杂的深度学习任务和实时渲染需求。
-
显卡型号:NVIDIA RTX 4090
-
数量:3台
-
总计算能力:极高,适合大规模并行处理
部署过程
-
环境准备:安装必要的软件包和驱动程序,包括CUDA、cuDNN以及相关的深度学习框架(PyTorch)。
-
系统架构:
主机一
主机一主要负责声音的检测和处理,具体功能如下:
-
VAD (声音检测): 负责实时检测声音的存在与否。
-
ASR (语音转文字): 使用阿里SenseVoice结合Python Flask提供接口,完成语音转文字的功能。
-
TTS (文字转语音): 采用CosyVoice和Python Flask提供接口,实现文字转语音及声音克隆的功能。
-
数字人渲染: 使用React、Three.js、Drei和TailWindCSS进行数字人的渲染。
主机二
主机二主要负责大语言模型(LLM)和图像生成,具体功能如下:
-
LLM: 通过Docker部署Dify,支持工作流和知识库的管理。
-
AI Model: 使用Ollama、Qwen 1.5和Llama等模型进行自然语言处理。
-
ComfyUI: 实现文生图的功能,支持文本到图像的转换。
主机三
主机三专注于音频处理,具体功能如下:
- Audio2Face: 负责将音频信号转换为面部动画,增强数字人的表现力。
接口与实时通信
所有主机通过Python Flask提供的接口进行通信,并使用WebSocket实现实时数据的发送。这种架构设计使得各个模块之间能够高效协作,确保系统的响应速度和处理能力。
通过以上的架构设计,系统能够实现高效的音频和视觉处理,为用户提供丰富的交互体验。
结论
通过使用三台NVIDIA RTX 4090显卡,成功构建了一个高效的离线3D数字人实时互动系统。该系统不仅提升了人机互动的自然性和流畅性,还为未来的应用场景提供了广阔的可能性。随着技术的不断进步,期待在更多领域中看到类似系统的应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。