Deep Research技术盘点!比RAG更高级的LLM应用范式

OpenAI的Deep Research工具横空出世后,各大厂商都推出了自研的Deep Research工具。所谓Deep Research,是和普通搜索比较的,简单的RAG检索生成一般只有一轮检索。然而Deep Research可以像人类一样,根据一个主题不断的检索,分析,再检索,再分析,直到达到研究目的。从这这个角度上讲,它本质上就是一个升级版的RAG应用,利用ReAct/Plan And Solve等模式构建的垂域 Agent,具备文章分解规划生成、资讯获取分析的能力。

原理上讲很简单,但想实现一个私有的满足自身业务需要的成品,其实际工程细节以及效果优化却相当复杂,因此,一些脚手架的项目或者成品的开发平台就显得尤为重要,这就和RAG一样,将会有越来越多的这样的开发框架出现。

今天,就介绍几款 Deep Research 开源实现,代表两种实现思路,一种是基于现有的编排框架实现,如Langchain Langgraph,另一种是针对deep research的特点专门设计开发 。通过它们不仅能够快速构建deep research应用,也能了解这些框架的实现细节以及具体的选型,比如用什么搜索,用什么存储,提示词是什么等等,这对于我们自己实现非常具有参考作用。

1. Langchain Open DeepResearch

它是LangChain官方的演示实现,基于 LangGraph 构建整个处理流程。通过集成多种 API,如 Tavily 、Perplexity,实现搜索和信息收集。用户可以设置每个章节的搜索深度,包括写作、反思、搜索和重写的迭代次数,同时可以对报告章节的计划提供反馈,并迭代至满意为止。

其使用到的Prompt:

https://github.com/langchain-ai/open_deep_research/blob/main/src/open_deep_research/prompts.py

项目地址:https://github.com/langchain-ai/open_deep_research

同类型的有Dify等框架编排的Deep Research应用。

2. Open Deep Research

Open Deep Research是众多垂域实现的一种。它解构了DeepSearch的过程,支持自动和半自动的Research过程。支持多种 API 接口,不仅能够检索外网信息,还能检索企业内部资料,进行汇总分析。用户可以根据需求选择不同的 AI 平台,包括 Google 、OpenAI 、Anthropic 、DeepSeek 等,甚至可以接入本地模型,实现个性化研究。

它包含了Deep ReSearch标准的的三个步骤:

  1. 搜索结果检索:通过 Google Custom Search 或Bing Search API(可配置)获取指定搜索词的全面搜索结果。

  2. 内容提取:利用 JinaAI 提取和处理选定的搜索结果内容,确保信息的准确性和相关性。

  3. 报告生成:使用用户选择的 AI 模型(如 Gemini 、GPT-4 、Sonnet 等)对整理好的搜索结果和提取的内容进行详细报告的生成,提供针对用户自定义提示的深入分析和见解。

以下是生成报告时使用的Prompt:

You are a research assistant tasked with creating a comprehensive report based on multiple sources.   
The report should specifically address this request: "${userPrompt}"  
  
Your report should:  
1. Have a clear title that reflects the specific analysis requested  
2. Begin with a concise executive summary  
3. Be organized into relevant sections based on the analysis requested  
4. Use markdown formatting for emphasis, lists, and structure  
5. Integrate information from sources naturally without explicitly referencing them by number  
6. Maintain objectivity while addressing the specific aspects requested in the prompt  
7. Compare and contrast the information from each source, noting areas of consensus or points of contention.   
8. Showcase key insights, important data, or innovative ideas.  
  
Here are the source articles to analyze:  
  
${articles  
  .map(  
    (article) => `  
Title: ${article.title}  
URL: ${article.url}  
Content: ${article.content}  
---  
`  
  )  
  .join('\n')}  
  
Format the report as a JSON object with the following structure:  
{  
  "title": "Report title",  
  "summary": "Executive summary (can include markdown)",  
  "sections": [  
    {  
      "title": "Section title",  
      "content": "Section content with markdown formatting"  
    }  
  ]  
}  
  
Use markdown formatting in the content to improve readability:  
- Use **bold** for emphasis  
- Use bullet points and numbered lists where appropriate  
- Use headings and subheadings with # syntax  
- Include code blocks if relevant  
- Use > for quotations  
- Use --- for horizontal rules where appropriate  
  
Important: Do not use phrases like "Source 1" or "According to Source 2". Instead, integrate the information naturally into the narrative or reference sources by their titles when necessary.`  

生成的报告可以下载或者存储在知识库中,但它的高质量搜索源不足,缺乏Research验证和迭代过程,因此在质量上还有改进的空间,但整体过程清晰,很适合在此基础上不断改进完善。

项目地址:https://github.com/btahir/open-deep-research

同类型的还有:

https://github.com/nickscamara/open-deep-research (4.3k)

https://github.com/mshumer/OpenDeepResearcher (2.2k)

https://github.com/assafelovic/gpt-researcher (19k)

https://github.com/zaidmukaddam/scira (6.4k)

https://github.com/jina-ai/node-DeepResearch (2.6k)

其中,node-DeepResearch 为jina的开源deep research实现,可以直接使用其api,和其他模型接口使用一样简单,可以快速集成到自己的应用中。

小结

就如文章一开始提到,Deep Research是用户高质量获取内容的需求进化的结果,打破被动推荐的信息茧房,抛弃传统的搜索总结,再搜索再总结的低效过程,很好的通过自动化的方式来解决。按此方向发展,内容获取的模式将会有新的变化,这对于传统的搜索推荐都将会是巨大挑战。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值