讲清楚了!一文看懂什么是世界模型

上周,看了华为的发布会,干货满满,同时也了解到一个新词–世界模型,这引起了我的好奇,究竟什么是世界模型呢?今天,就来聊聊~

世界模型的定义

世界模型是一种能够对现实世界环境进行仿真,并基于文本、图像、视频和运动等输入数据来生成视频、预测未来状态的生成式 AI 模型。它整合了多种语义信息,如视觉、听觉、语言等,通过机器学习、深度学习和其他数学模型来理解和预测现实世界中的现象、行为和因果关系。

简单来说,世界模型就像是 AI 系统对现实世界的 “内在理解” 和 “心理模拟”。它不仅能够处理输入的数据,还能估计未直接感知的状态,并预测未来状态的变化。这种模型使 AI 具备了类似人类的认知和推理能力,能够在一个虚拟的 “脑海” 中进行模拟和规划,从而更好地应对现实世界的复杂性。

世界模型的起源与发展

“World Models” 这一词最早出现在 2018 年 Jurgen 在机器学习顶会 NeurIPS 上发表的一篇名为《Recurrent World Models Facilitate Policy Evolution》的文章中。文章以认知科学中人脑的 mental model 来类比世界模型,认为 mental model 参与了人类的认知、推理、决策过程,其中最核心的能力在于反事实推理。

img

近年来,随着深度学习技术的不断发展和计算资源的增加,世界模型的研究取得了显著的进展。例如,2019 年 DeepMind 发表的 MuZero 算法、2022 年 LeCun 提出的 JEPA 表征模型、2024 年的视频生成模型 Sora 和城市环境生成模型 UrbanWorld 等,都推动了世界模型在不同领域的应用探索。

世界模型的核心特点

  • 内在表征与预测 :世界模型可以将高维的原始观测数据(如图像、声音、文本等)编码为低维的潜在状态,形成对世界的简洁而有效的表征。在此基础上,它能够预测在给定当前状态和动作的情况下,下一个时刻的状态分布,从而实现对未来事件的前瞻性预测。
  • 物理认知与因果关系 :世界模型具备基本的物理认知能力,能够理解和模拟物理世界的规律,如重力、摩擦力、运动轨迹等。这使得它在处理与物理世界相关的问题时,能够提供更准确、更符合现实的预测和决策支持。
  • 反事实推理能力 :世界模型不仅能够基于已有的数据进行预测,还能够进行假设性思考,即反事实推理。例如,它可以回答 “如果环境条件改变,结果会怎样” 这类问题,从而为复杂问题的解决提供更多的可能性和思路。

三、世界模型的组成

世界模型通常由三个主要的组件构成:

img

  • 状态表征模型 :其作用是将原始观测数据(如高维图像、传感器数据等)压缩为低维的潜在状态,保留关键信息,过滤噪声。常见的实现方法是使用变分自动编码器(VAE)等技术。这种压缩和表示方式使得模型能够更高效地处理和理解复杂的数据输入。
  • 动态模型 :这是世界模型的核心部分,用于预测给定当前潜在状态和动作时,环境的下一个状态分布。循环神经网络(RNN)、长短期记忆网络(LSTM)或随机状态空间模型(SSM)等通常被用来学习状态转移规律,从而构建对世界物理规律的隐式理解。动态模型为智能体提供了一个虚拟的 “沙盘”,使其能够在其中进行模拟和试验,而无需在真实环境中进行昂贵的试错。
  • 决策模型 :基于状态预测,决策模型使用模型预测控制(MPC)或深度强化学习(如 Actor-Critic 网络)等方法,规划最优的动作序列以达成目标。它根据预测的未来状态来评估不同动作的价值或奖励信号,从而指导智能体在环境中采取合理的行动。

世界模型的应用实例

  • 自动驾驶领域 :自动驾驶汽车可以利用世界模型来实时分析和预测交通状况的变化。例如,车辆的传感器收集到周围车辆、行人的位置、速度以及道路状况等信息后,将其输入到世界模型中。世界模型基于这些数据预测其他车辆和行人的未来运动轨迹,以及交通信号的变化等,从而提前做出决策,如加速、减速、变道或刹停,以确保行车的安全性和舒适性。
  • 机器人领域 :在机器人操作任务中,世界模型能够帮助机器人更好地理解和适应环境。比如,一个工业机器人在装配生产线上的零件时,世界模型可以根据机器人对零件的视觉观察和历史操作经验,预测不同操作动作对零件位置和姿态的影响,从而选择最优的操作路径,提高装配的效率和精度。
  • 游戏与虚拟现实领域 :世界模型可以用于生成更加逼真和智能的游戏角色行为。游戏中的非玩家角色(NPC)可以基于世界模型对玩家的行为、周围环境的变化做出合理的反应和决策,使游戏的交互性和可玩性得到提升。同时,在虚拟现实环境中,世界模型也能够实时预测用户的行为和意图,为用户提供更自然、更沉浸式的体验。

世界模型面临的挑战与未来展望

尽管世界模型展现出了巨大的潜力,但也面临着许多挑战:

  • 数据需求与质量 :构建世界模型需要大量的多模态数据,包括视频、音频、传感器数据等,而这些数据的收集、标注和整理往往成本高昂且耗时费力。同时,数据的质量和多样性也会直接影响模型的性能和泛化能力。
  • 计算资源与效率 :训练和运行世界模型需要庞大的计算资源,这不仅限制了模型的规模和复杂度,也增加了研发和应用的成本。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 视觉语言模型的基本概念 视觉语言模型(Vision-Language Models, VLMs)是一种跨模态的人工智能技术,旨在连接视觉数据(如图像、视频)与自然语言之间的关系。这些模型可以理解并生成关于视觉内容的语言描述,或者反过来根据语言指令分析和解释视觉信息[^1]。 具体来说,在图像描述任务中,VLM 需要识别图像中的对象、场景及其相互作用,并将其转化为连贯的自然语言叙述;而在图像问答任务中,则需结合输入的文字问题解析图像内容,提供精确的回答。这表明 VLM 不仅具备强大的感知能力,还拥有一定的推理能力和表达能力。 ### 工作原理 视觉语言模型的核心工作流程通常涉及以下几个方面: #### 跨模态特征提取 为了实现对多种类型的数据的理解,VLM 使用预训练方法来获取高质量的跨模态表示向量。例如,基于 Transformer 的架构被广泛应用于这一过程,因为它能有效捕捉序列间的依赖关系,无论是来自文本还是像素级的空间分布信息[^2]。 ```python import torch from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") image = ... # PIL image object text = ["a photo of a cat", "a photo of a dog"] inputs = processor(text=text, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get probability distribution print(probs) ``` 此代码片段展示了如何利用 Hugging Face 提供的 `CLIP` 模型计算图片与若干候选词句之间的相似度得分,进而推断最匹配的结果。 #### 对齐机制 另一个关键技术是对齐机制的设计——即怎样让两个异质空间内的元素建立起映射关联。一些先进方案采用对比学习框架构建损失函数,促使正样本对拉近彼此距离的同时推开负样例组。 ### 应用领域 由于其卓越性能表现,VLM 正迅速渗透到多个实际应用场景之中: - **电子商务**: 自动生成商品详情页文案; - **社交媒体平台**: 辅助审核违规内容或增强用户体验交互界面设计; - **医疗健康行业**: 协助医生诊断疾病影像资料同时记录诊疗意见等复杂操作步骤说明文档撰写服务等等[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值