Nature:通用医学AI的基础模型

本文将概述23年4月发表于_nature_的Foundation models for generalist medical artificial intelligence

和大家一起看看基础模型在通用医学人工智能(Generalist Medical AI, GMAI)的应用,以及它如何通过多模态数据解析、动态任务学习和医学知识运用,彻底改变我们的医疗实践。

在这里插入图片描述

什么是通用医学AI(GMAI)?unsetunset

通用医学AI是一类先进的基础模型,具备处理多种医疗任务的能力,而无需针对每个具体任务进行单独训练。

与传统的AI模型不同,GMAI可以通过少量或无需标注数据,灵活应对不同的医疗需求。

这种模型通过在大规模、多样化的数据集上进行自监督学习,能够理解和整合来自影像、电子健康记录(EHR)、组学、实验室结果等多种数据类型,生成详细的诊断报告、治疗建议甚至蛋白质设计方案。

图1 | GMAI模型概况

a. GMAI在多种医学数据模态上通过子监督学习进行训练。为了实现灵活的交互,不管是文字、语音还是图像都要和语言配对。接下来GMAI需要访问各种医学知识源,以执行医学推理任务,从而解锁各种下游应用。最终,GMAI模型还能够执行用户实时指定的任务。为此,GMAI可以从知识图谱或数据库等来源检索上下文信息,利用正式的医学知识对以前未见过的任务进行推理。

b. GMAI模型为多个临床学科的众多应用奠定了基础,每个应用都需要经过仔细的验证和监管评估。

a. GMAI可以实现多功能且自我解释的病床边决策支持。

b. 基于事实的放射学报告配备了可点击的链接,用于可视化每个发现。

c. GMAI有潜力对模型开发过程中从未遇到过的现象进行分类。在增强手术流程中,通过利用医学领域知识和位置环境,对罕见的异常发现进行逐步推理解释。

下面是这三个应用方向:

面向医生的:

1.临床决策支持CDSS:GMAI可以解析电子健康记录,预测患者未来的健康状况,并提供详细的治疗建议,帮助临床医生做出更明智的决策。这一能力是过渡期CDSS(完全人工标记)的升级版,不在依赖医学产品经理能力和对电子病历数据质量提更高的要求,使CDSS系统真正实用化,不止于评级。

2.病历文书生成:通过监控医生与患者的对话,GMAI能够自动起草病历记录和出院报告,减少医生的行政负担,让他们有更多时间专注于医生诊疗/患者护理。这一能力或可提前学习国家卫健各级质控指标(病历质控、单病种质控、DRG/DIP等),自动生成规范化病历文书。

3.检验检查原片解读:GMAI可以自动生成详细的检验检查,描述检验/影像中的异常和正常发现,并结合患者病史提供互动式可视化,帮助放检验/射科医生更准确地诊断疾病。这一能力从OCR识别检验检查报告结果,进化为识别检验检查原片。

4.手术流程规划:在手术过程中,GMAI能够实时标注视频,提供语音提醒,甚至在遇到罕见病理现象时,依据解剖学知识进行推理,辅助外科医生做出更准确的判断。这一能力从手术示教进化成手术决策支持,规划针对患者更加个性化的合理手术方案。

面向患者服务的:

GMAI驱动的聊天机器人能够与患者互动,提供健康建议和解释,甚至根据患者自带的数据(如饮食照片)进行健康监控,提升患者的自我管理能力。

面向科研的:

1.新药研发:GMAI可以根据文本描述生成蛋白质的氨基酸序列及其三维结构,辅助科学家进行蛋白质设计,加速药物研发和生物工程的进展。

2.临床试验自动入组、随访管理:GMAI可提前阅览类似研究,确定选题方向;自动识别病历中符合入组条件的病人,进行智能外呼征询入组,并在实验研究中进行随访管理;在实验结束自动生成试验结论。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值