Science子刊 | UKB数据库的前瞻性研究设计和数据分析

本文探讨了UK Biobank的前瞻性研究设计与数据分析方法,描述如何通过该数据库的设计和数据获取政策来最大限度地减少误差并提高研究结果的解释性,同时对正在全球建立的其他基于人群的前瞻性研究具有重要启示。

UKB发展脉络:

  • 1950年代:早期前瞻性研究的出现,如英国医生研究和Framingham心脏研究,奠定了理解疾病危险因素的基础。

  • 2000年代初:遗传研究开始迅速发展,基因-环境交互作用成为研究热点。

  • 2006-2010年:UK Biobank建立,招募了50万名中老年参与者。

  • 2017年:全队列基因组数据的发布,极大推动了疾病遗传因素的研究。

1. 前瞻性研究设计:规模、深度和长期随访

UK Biobank的设计结合了大规模、深度数据和长时间的随访,是目前世界上规模最大、数据类型最丰富的前瞻性研究之一,由英国医学研究理事会和韦尔科姆建立,并与英国心脏基金会、英国癌症研究中心( CRUK )和国家健康和护理研究所一起继续资助。这一研究平台涵盖了基因组、环境因素、生活方式等多种数据类型,为科学家提供了探索疾病成因和健康的无与伦比的资源。UK Biobank通过创新的方法,克服了传统流行病学研究的一些局限,为未来几十年的疾病研究奠定了基础。

1.1 参与者招募与样本规模

UK Biobank在2006年至2010年期间成功招募了502,000名年龄在40到69岁之间的成人志愿者,覆盖了英国英格兰、苏格兰和威尔士地区。这一年龄段的选择策略旨在确保参与者具有相对较低的疾病负担,并为未来随访期间观察疾病发展提供较长的时间窗口。参与者的招募主要通过邮寄邀请函进行,约900多万人受到了邀请,这些信件分发给居住在离22个专用评估中心较近(通常在25英里以内)的英国国家健康服务系统(NHS)登记居民。

评估中心的选址经过精心挑选,以便覆盖人口密度较高的地区,确保项目具有良好的地理可达性,同时尽可能接触到社会经济背景不同和种族多样的人群。UK Biobank意识到选择偏倚的风险,并采取措施招募来自少数族裔群体和社会经济较低群体的参与者,以增加队列的多样性和代表性。尽管整体参与率为5.5%,这在一般的流行病学研究中算是较低的,但由于参与者数量庞大(超过50万人),UK Biobank的样本依然具备广泛的分析能力。

1.2 数据采集的深度与广度

在每个评估中心,参与者接受了一系列标准化的数据采集流程,确保数据的高质量和一致性。UK Biobank采用了多种数据采集方式,包括:

  • 问卷调查:参与者填写详细的问卷,涵盖多个方面的信息,如人口统计学特征(年龄、性别、种族、教育水平、职业、收入等)、生活方式因素(饮食、吸烟史、酒精摄入、身体活动、睡眠模式、阳光暴露和性健康等)、心理健康状况(抑郁和焦虑水平、心理社会压力等)、医疗史(慢性疾病、手术和用药情况)以及环境暴露(空气污染、噪声水平等)。

  • 体格测量:每位参与者接受多项体格检查,包括血压测量、身高、体重、腰围和臀围、体脂测量(通过生物电阻抗分析)、肺功能检测(使用肺活量计)、握力测试和视力检查。这些测量采用标准化设备进行,以确保数据的可比性和准确性。

1.3 生物样本采集与处理

UK Biobank为每位参与者收集了血液、尿液和唾液样本,并存储在自动化的生物样本库中。这些样本经过特殊处理后,被保存于超低温环境中,用于未来的生化和基因组分析。生物样本的处理和存储涉及先进的机器人技术和样本跟踪系统,以最大限度地减少人为误差和生物降解的风险。UK Biobank特别注重样本质量控制,所有样本的处理过程严格标准化,以确保数据分析中的一致性和可靠性。

为了支持基因组学研究,UK Biobank对所有参与者进行了全基因组基因分型,并在后来进行全基因组测序和全外显子组测序。此外,还对血液样本进行了一系列生物化学分析,如血糖、胆固醇、炎症标记物和其他代谢指标。这些数据为研究者提供了丰富的生物学信息,使得多因素分析和因果推断成为可能。

1.4 重复测量与纵向数据收集

UK Biobank深知暴露测量中的随机误差可能会影响研究的精确性和稳健性,因此在部分参与者中进行了重复测量。例如,2012至2013年,UK Biobank对约20,000名参与者进行了随访测量,以便研究者能够更好地校正回归稀释偏倚。此外,从2014年起,UK Biobank启动了影像数据收集项目,计划对100,000名参与者进行多模式影像扫描,包括脑部和全身的MRI扫描。这些影像数据极大地丰富了生理和解剖数据,帮助研究人员探索疾病的早期生物标志物。

未来,UK Biobank还计划进一步扩大重复测量的范围和频率,包括纵向生物样本采集和环境暴露的跟踪,如通过智能手机数据监测参与者的地理位置变化和环境暴露水平。这种纵向数据收集将使研究人员能够更准确地探讨环境和行为变化对健康的长期影响。

1.5 长期随访与健康数据链接

UK Biobank将参与者的数据与英国国家健康服务系统(NHS)的电子健康记录相链接,实现了健康结局的长期随访。这些链接数据包括医院入院记录、癌症登记数据和死亡登记数据,确保了健康结果的全面性和准确性。此外,UK Biobank还计划获取初级保健数据,以进一步完善健康数据集。通过这种数据链接,研究者能够追踪多种疾病的发病情况,并分析暴露因素与健康结局之间的潜在关联。

长期随访不仅提高了研究的统计效能,还允许研究人员探索疾病进展和复发的风险因素。例如,UK Biobank提供了详细的疾病编码和健康状态记录,使得研究人员可以研究不同疾病亚型的特定暴露因素。这种详细的数据覆盖范围和长期随访设计,使得UK Biobank成为研究从基因到环境多因素对疾病影响的理想平台。

2. 数据获取与开放策略:公平与透明

UK Biobank的数据获取策略注重公平与透明,确保学术界和产业界的研究者都能获得这些宝贵的数据资源。不论是来自学术机构还是商业公司,只要研究具有公共利益,符合资格的研究者都可以申请访问这些数据。

数据获取的流程简单明了,所有通过审批的研究人员可以在线访问经去识别化处理的数据进行健康相关研究,而无需与UK Biobank的研究者进行合作。这一策略大大提高了研究效率,并促进了全球科学合作。此外,UK Biobank还为低收入和中等收入国家的研究者提供免费计算和数据存储服务,以促进这些地区的科研发展。

3. 多样化的数据类型与广泛应用

UK Biobank收集了丰富多样的数据类型,包括基因组数据、影像学数据和生物样本数据。这些数据类型的多样性和深度使其在多种科学研究中具有重要的应用价值。

英国生物银行的数据类型

  • 基因组数据:基因组数据是UK Biobank数据的核心部分之一,包括全基因组基因分型和推断数据,研究人员可以利用这些数据深入分析基因变异与疾病之间的关系。

  • 影像学数据:UK Biobank还提供脑部、心脏、腹部等部位的MRI数据,以及骨密度数据,这些影像学数据使得科学家可以研究器官结构与功能在疾病中的变化。

  • 生物样本数据:生物样本包括血液、尿液和唾液等,经过标准化采集和处理,保证了数据质量和一致性。通过这些样本的生化和血液学分析,可以获取血脂、血糖等指标,为个体化医学研究提供支持。

自数据发布以来,UK Biobank已吸引了来自世界各地的研究人员。到2023年,UKB数据已支持了近10,000篇学术论文的发表,涵盖疾病的多因素分析和新型预测模型的开发。UK Biobank还推出了基于云的研究分析平台,为研究人员提供了更方便的访问途径,尤其是对基因组数据和其他大规模数据的处理和分析。这种基于云的系统还为来自低收入和中等收入国家的研究人员和早期职业研究人员提供了计算资源和数据存储的免费支持,进一步促进了全球范围内的数据利用。

4. 数据分析与统计方法

UK Biobank的设计旨在最大限度地减少研究中的随机误差和系统偏倚,同时提高数据分析的稳健性和准确性。由于前瞻性研究通常会面临各种形式的偏倚,如选择偏倚和混杂偏倚,UK Biobank采取了一系列创新的分析策略来解决这些问题。

4.1 选择偏倚与混杂因素

选择偏倚是指由于特定参与者的选择或排除导致研究结果无法准确反映总体人群的真实关联。UK Biobank的参与者中,非吸烟者和社会经济水平较高者的比例相对较高,这种不均衡可能影响研究对某些暴露与疾病风险之间关联的观察。例如,吸烟与肺癌的关联可能会因社会经济地位的混杂效应而被稀释。为了解决这一问题,研究人员可以采用敏感性分析和概率加权方法,以量化选择偏倚的潜在影响。此外,通过使用图形工具(如因果图),研究人员能够直观地展示变量之间的因果关系,并分析偏倚的影响。

4.2 误差校正与数据整合

暴露测量误差(无论是随机误差还是系统误差)会显著影响研究结果的精确性。为了减少这种误差,UK Biobank在部分参与者中进行了重复测量,并计划在更多参与者中进行纵向暴露数据的收集。例如,基线评估中进行的血压测量可能受到短期波动的影响,从而导致疾病关联的低估。通过在同一组参与者中多次测量,可以校正这种回归稀释偏倚(UKB数据库前瞻性研究综述)(UKB数据库前瞻性研究综述)。

此外,UK Biobank利用复杂的生物样本采集与处理技术,确保样本质量的一致性。例如,生物样本的自动化处理和长期存储系统能够最大限度地减少实验室误差。样本的批量分析采用优化算法来矫正实验室漂移,并在出现系统误差时重新测量某些样本。正是这些严格的质量控制措施,确保了UK Biobank数据的高可靠性。

4.3 遗传学与因果推断

在因果推断方面,UK Biobank的基因数据为研究人员提供了强大的工具。例如,孟德尔随机化(Mendelian randomization)是分析因果关系的重要方法之一,使用基因变异作为暴露因子的替代指标,来克服传统观测性研究中可能存在的混杂因素。由于基因变异在生殖过程中随机分配,使用这种方法可以提供有关因果关系的有力证据。例如,研究表明,体脂质量和白介素-6在心血管疾病发展中的因果作用得到了孟德尔随机化的支持,而其他因素(如维生素D)与心血管疾病之间的关联则未能得到强有力的因果支持。

然而,即便是孟德尔随机化分析,也需要谨慎处理潜在的偏倚问题。某些情况下,暴露和遗传变异之间的弱关联可能会降低孟德尔随机化的有效性。此外,研究者可利用其他分析策略,如多重偏倚分析或概率分析,以更好地控制潜在偏倚并评估结果的不确定性。通过使用多种分析方法进行证据三角化(triangulation),研究人员可以更全面地评估因果关系的稳健性。

4.4 重复测量与长期随访

重复测量的最大优势在于能纠正暴露测量中的随机误差,并研究个体暴露水平随时间的变化。例如,UK Biobank在部分参与者中进行了随访测量,如再次进行体力活动监测和生理指标测量。未来,UK Biobank计划进一步扩大重复测量的范围,包括更多的生物化学、基因组和环境数据,以便更准确地理解暴露因素与疾病之间的因果关系。此外,这些数据还将用于研究某些健康行为和环境暴露的长期变化如何影响疾病风险。

UK Biobank还积极探索使用最新的技术来捕获长期环境暴露的变化,例如利用智能手机的GPS追踪记录参与者的居住地变化,以及通过可穿戴设备收集生活方式数据。这些努力将进一步提高暴露数据的准确性和时间分辨率,帮助研究人员解答有关暴露与健康关系的关键问题。

5. 挑战与前景

UK Biobank项目因其无与伦比的规模和数据深度,为全球健康研究提供了前所未有的研究机会。其开放数据政策促进了科学界的合作,并显著推动了复杂疾病成因的研究。UK Biobank不仅为基因、生活方式和环境因素对健康影响的研究提供了平台,还为预测疾病风险和识别早期生物标志物提供了宝贵的数据资源。

未来,UK Biobank将继续在生物样本和影像数据方面进行扩展,以进一步完善数据的广度和深度。随着参与者逐渐老龄化,疾病病例数的增加也将提高分析的统计能力,尤其是在探讨稀有疾病及其风险因素时。作者强调,尽管UK Biobank已在多方面取得了重大进展,但其他人群和地理区域的大规模前瞻性研究依然至关重要。这将有助于检验和推广UK Biobank的研究发现,并提升全球疾病防控的能力。

此外,作者指出,未来的研究将需要进一步探讨不同人群中的基因和环境交互作用。例如,基于欧洲人群开发的多基因风险评分在应用于非洲或南亚裔群体时,其预测效力会有所减弱。因此,作者呼吁在全球范围内建立更多多样化的队列研究,确保科学发现的广泛适用性,并推动个体化疾病预防和治疗策略的发展。这种多维度、全球化的研究策略,不仅能揭示疾病的潜在原因,还可以为政策制定者提供科学依据,以实施更加有效的公共卫生干预措施。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 如何在UKB数据库中实现逻辑回归分析 为了在UKB(英国生物样本库)数据库中执行逻辑回归分析,需遵循一系列严谨的数据处理建模流程。此过程不仅涉及到数据预处理、特征工程,还包括模型的选择与评估。 #### 数据准备阶段 1. **加载必要的Python包** 需要安装并导入用于数据分析机器学习的相关库,如`pandas`, `numpy`, `matplotlib`, `seaborn`以及专门用于统计建模的`statsmodels`或`sklearn`. ```python import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix import statsmodels.api as sm ``` 2. **获取并清理数据** 使用官方API或其他合法途径下载所需字段的数据集,并对其进行初步清洗,去除缺失值较多的记录或变量,确保后续操作基于高质量的数据之上. 3. **探索性数据分析(EDA)** 对目标变量其他潜在预测因之间关系进行可视化展示,帮助理解各因素间可能存在的关联模式,从而指导下一步特征选择工作.[^1] #### 构建逻辑回归模型 4. **定义自变量(X)因变量(y)** 明确指出哪些列作为输入特征X,哪一列为响应变量y;注意当处理二分类问题时,后者应当被编码成0/1形式. 5. **分割训练集测试集** 将原始数据随机划分为两个部分——70%-80%比例分配给前者用来拟合参数估计,剩余则留作外部验证之用. ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 6. **创建并训练模型实例** 采用两种方式之一来建立逻辑回归对象: - 利用`LogisticRegression()`类快速搭建基础版; - 或者借助`sm.Logit().fit()`方法获得更详细的统计推断结果,包括P值、标准误等指标. ```python # 方法A: Scikit-Learn logreg = LogisticRegression() logreg.fit(X_train, y_train) # 方法B: StatsModels (含更多诊断信息) model = sm.Logit(y_train, X_train).fit() print(mode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值