药学视角零基础复现基于IEU数据库的孟德尔随机化在线分析(三)——IEU数据库的筛选及在线数据分析实操

RStudio的脚本文件分享在下一篇文章中,已设置为为免费获取。

一、IEU数据库的筛选

打开网址:IEU OpenGWAS project (mrcieu.ac.uk)

在框内输入你想查询的暴露因素,例如Mineral and other dietary supplements(矿物质及其他膳食补充剂)

 

接着选取自己想要研究的的暴露因素的【GWAS ID】,以第一个ukb-b-7043为例。

然后检索结局指标,【stroke】

选择数据集ebi-a-GCST90038613作为结局指标。

二、在线数据分析实操

打开RStudio我分享的脚本文件,复制暴露因素的GWAS ID到下图的指定位置。

### 孟德尔随机化基因分析工具与库 在生物信息学领域,存在多种用于执行孟德尔随机化(Mendelian Randomization, MR)分析的工具和软件包。这些工具能够帮助研究者识别因果关系并评估遗传变异对复杂疾病的影响。 #### R语言中的MR工具 R语言提供了多个专门针对孟德尔随机化的包,其中最常用的包括`TwoSampleMR`[^2] 和 `mr.raps`[^3]。 - **TwoSampleMR** 是一种强大的工具,支持两样本MR分析,允许用户轻松获取汇总统计数据、进行多变量调整以及可视化结果。该包还集成了GWAS数据资源,便于快速开展分析。 - **mr.raps** 提供了一种稳健的方法来处理潜在偏差问题,特别适用于当IV假设可能被违反的情况。 ```r library(TwoSampleMR) exposures <- extract_instruments(outcomes$exposure) outcomes <- extract_outcome_data(snps=exposures$SNP, outcomes=outcomes$outcome) dat <- harmonise_data(exposures, outcomes) mr(dat) ``` #### Python中的MR工具 Python社区也开发了一些现MR功能的库,例如 `PyMR`[^4] 和 `SMR (Summary-data-based MR)`[^5]。 - **PyMR** 是一个灵活的框架,可以导入自定义的数据格式,并提供了一系列统计方法来进行单变量或多变量MR分析。 - **SMR** 则专注于利用总结数据完成高效的MR计算,适合大规模数据分析场景。 ```python from pymr import mr_analysis results = mr_analysis(instrumental_variables, outcome_data) print(results.summary()) ``` #### 其他重要考虑因素 除了上述具体工具外,在际应用过程中还需要注意以下几点: 1. 数据质量控制:确保输入的遗传关联估计值具有足够的精度和代表性[^6]。 2. IV有效性检验:验证所选仪器变量是否满足排除限制条件和其他基本假定[^7]。 3. 结果解释谨慎性:即使得到显著的结果也需要结合生物学机制加以合理解读。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值